Suppr超能文献

人类垂体腺瘤蛋白质组学:新进展与展望

Human Pituitary Adenoma Proteomics: New Progresses and Perspectives.

作者信息

Zhan Xianquan, Wang Xiaowei, Cheng Tingting

机构信息

Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China; The State Key Laboratory of Medical Genetics, Central South University, Changsha, China.

Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China.

出版信息

Front Endocrinol (Lausanne). 2016 May 31;7:54. doi: 10.3389/fendo.2016.00054. eCollection 2016.

Abstract

Pituitary adenoma (PA) is a common intracranial neoplasm that impacts on human health through interfering hypothalamus-pituitary-target organ axis systems. The development of proteomics gives great promises in the clarification of molecular mechanisms of a PA and discovery of effective biomarkers for prediction, prevention, early-stage diagnosis, and treatment for a PA. A great progress in the field of PA proteomics has been made in the past 10 years, including (i) the use of laser-capture microdissection, (ii) proteomics analyses of functional PAs (such as prolactinoma), invasive and non-invasive non-functional pituitary adenomas (NFPAs), protein post-translational modifications such as phosphorylation and tyrosine nitration, NFPA heterogeneity, and hormone isoforms, (iii) the use of protein antibody array, (iv) serum proteomics and peptidomics, (v) the integration of proteomics and other omics data, and (vi) the proposal of multi-parameter systematic strategy for a PA. This review will summarize these progresses of proteomics in PAs, point out the existing drawbacks, propose the future research directions, and address the clinical relevance of PA proteomics data, in order to achieve our long-term goal that is use of proteomics to clarify molecular mechanisms, construct molecular networks, and discover effective biomarkers.

摘要

垂体腺瘤(PA)是一种常见的颅内肿瘤,通过干扰下丘脑 - 垂体 - 靶器官轴系统影响人类健康。蛋白质组学的发展为阐明垂体腺瘤的分子机制以及发现用于垂体腺瘤预测、预防、早期诊断和治疗的有效生物标志物带来了巨大希望。在过去10年里,垂体腺瘤蛋白质组学领域取得了重大进展,包括:(i)使用激光捕获显微切割技术;(ii)对功能性垂体腺瘤(如催乳素瘤)、侵袭性和非侵袭性无功能性垂体腺瘤(NFPA)、蛋白质翻译后修饰(如磷酸化和酪氨酸硝化)、NFPA异质性以及激素异构体进行蛋白质组学分析;(iii)使用蛋白质抗体芯片;(iv)血清蛋白质组学和肽组学;(v)蛋白质组学与其他组学数据的整合;(vi)提出垂体腺瘤的多参数系统策略。本综述将总结蛋白质组学在垂体腺瘤方面的这些进展,指出存在的不足,提出未来的研究方向,并阐述垂体腺瘤蛋白质组学数据的临床相关性,以实现我们利用蛋白质组学阐明分子机制、构建分子网络并发现有效生物标志物的长期目标。

相似文献

1
Human Pituitary Adenoma Proteomics: New Progresses and Perspectives.
Front Endocrinol (Lausanne). 2016 May 31;7:54. doi: 10.3389/fendo.2016.00054. eCollection 2016.
2
Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas.
Biochim Biophys Acta Proteins Proteom. 2021 Mar;1869(3):140584. doi: 10.1016/j.bbapap.2020.140584. Epub 2020 Dec 13.
3
Heterogeneity analysis of the proteomes in clinically nonfunctional pituitary adenomas.
BMC Med Genomics. 2014 Dec 24;7:69. doi: 10.1186/s12920-014-0069-6.
7
Multiomics-Based Signaling Pathway Network Alterations in Human Non-functional Pituitary Adenomas.
Front Endocrinol (Lausanne). 2019 Dec 17;10:835. doi: 10.3389/fendo.2019.00835. eCollection 2019.
8
The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas.
Mass Spectrom Rev. 2022 Nov;41(6):964-1013. doi: 10.1002/mas.21710. Epub 2021 Jun 9.
9
Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas.
Tumour Biol. 2016 Jul;37(7):8923-30. doi: 10.1007/s13277-015-4767-2. Epub 2016 Jan 11.
10
Comparative proteomics analysis of human pituitary adenomas: current status and future perspectives.
Mass Spectrom Rev. 2005 Nov-Dec;24(6):783-813. doi: 10.1002/mas.20039.

引用本文的文献

1
Three-dimensional chromatin landscapes in somatotroph tumour.
Clin Transl Med. 2024 May;14(5):e1682. doi: 10.1002/ctm2.1682.
2
Proteomic Profiles Associated With Postsurgical Progression in Nonfunctioning Pituitary Adenomas.
J Clin Endocrinol Metab. 2024 May 17;109(6):1485-1493. doi: 10.1210/clinem/dgad767.
3
Applications of spatially resolved omics in the field of endocrine tumors.
Front Endocrinol (Lausanne). 2023 Jan 10;13:993081. doi: 10.3389/fendo.2022.993081. eCollection 2022.
4
Architects of Pituitary Tumour Growth.
Front Endocrinol (Lausanne). 2022 Jun 28;13:924942. doi: 10.3389/fendo.2022.924942. eCollection 2022.
5
Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas.
Front Pharmacol. 2021 Mar 24;12:565748. doi: 10.3389/fphar.2021.565748. eCollection 2021.
6
Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas.
Diagnostics (Basel). 2021 Feb 17;11(2):330. doi: 10.3390/diagnostics11020330.
7
Editorial: Molecular Network Study of Pituitary Adenomas.
Front Endocrinol (Lausanne). 2020 Feb 18;11:26. doi: 10.3389/fendo.2020.00026. eCollection 2020.
8
Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients.
Front Endocrinol (Lausanne). 2019 Dec 5;10:854. doi: 10.3389/fendo.2019.00854. eCollection 2019.
9
Multiomics-Based Signaling Pathway Network Alterations in Human Non-functional Pituitary Adenomas.
Front Endocrinol (Lausanne). 2019 Dec 17;10:835. doi: 10.3389/fendo.2019.00835. eCollection 2019.
10
Mitochondrial Dysfunction Pathway Networks and Mitochondrial Dynamics in the Pathogenesis of Pituitary Adenomas.
Front Endocrinol (Lausanne). 2019 Oct 9;10:690. doi: 10.3389/fendo.2019.00690. eCollection 2019.

本文引用的文献

1
Recent findings and technological advances in phosphoproteomics for cells and tissues.
Expert Rev Proteomics. 2015;12(5):469-87. doi: 10.1586/14789450.2015.1078730.
2
Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow.
Mol Cell Proteomics. 2015 Sep;14(9):2429-40. doi: 10.1074/mcp.O114.047555. Epub 2015 May 7.
3
EPMA position paper in cancer: current overview and future perspectives.
EPMA J. 2015 Apr 15;6(1):9. doi: 10.1186/s13167-015-0030-6. eCollection 2015.
5
Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis.
Mol Cell Proteomics. 2015 Apr;14(4):796-811. doi: 10.1074/mcp.M114.045922. Epub 2015 Jan 20.
6
Heterogeneity analysis of the proteomes in clinically nonfunctional pituitary adenomas.
BMC Med Genomics. 2014 Dec 24;7:69. doi: 10.1186/s12920-014-0069-6.
7
Large-scale label-free phosphoproteomics: from technology to data interpretation.
Bioanalysis. 2014 Sep;6(18):2403-20. doi: 10.4155/bio.14.188.
8
Recent advances in defining the ubiquitylome.
Expert Rev Proteomics. 2014 Aug;11(4):477-90. doi: 10.1586/14789450.2014.926223. Epub 2014 Jun 25.
9
Emerging technologies to map the protein methylome.
J Mol Biol. 2014 Oct 9;426(20):3350-62. doi: 10.1016/j.jmb.2014.04.024. Epub 2014 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验