Yang Zhen, Carass Aaron, Prince Jerry L
Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218.
Proc IEEE Int Symp Biomed Imaging. 2012 May;2012:418-421. doi: 10.1109/ISBI.2012.6235573.
Extracting and labeling sulcal curves on the human cerebral cortex is important for many neuroscience studies, however manually annotating the sulcal curves is a time-consuming task. In this paper, we present an automatic sulcal curve extraction method by registering a set of dense landmark points representing the sulcal curves to the subject cortical surface. A Markov random field is used to model the prior distribution of these landmark points, with short edges in the graph preserving the curve structure and long edges modeling the global context of the curves. Our approach is validated using a leave-one-out strategy of training and evaluation on fifteen cortical surfaces, and a quantitative error analysis on the extracted major sulcal curves.
在人类大脑皮层上提取和标记脑沟曲线对许多神经科学研究都很重要,然而手动标注脑沟曲线是一项耗时的任务。在本文中,我们提出了一种自动脑沟曲线提取方法,该方法通过将一组表示脑沟曲线的密集地标点注册到受试者的皮质表面来实现。马尔可夫随机场用于对这些地标点的先验分布进行建模,图中的短边保留曲线结构,长边对曲线的全局上下文进行建模。我们的方法通过对15个皮质表面采用留一法训练和评估策略以及对提取的主要脑沟曲线进行定量误差分析来验证。