Suppr超能文献

用于去除脑外组织的简单范例:算法与分析。

Simple paradigm for extra-cerebral tissue removal: algorithm and analysis.

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Neuroimage. 2011 Jun 15;56(4):1982-92. doi: 10.1016/j.neuroimage.2011.03.045. Epub 2011 Mar 31.

Abstract

Extraction of the brain-i.e. cerebrum, cerebellum, and brain stem-from T1-weighted structural magnetic resonance images is an important initial step in neuroimage analysis. Although automatic algorithms are available, their inconsistent handling of the cortical mantle often requires manual interaction, thereby reducing their effectiveness. This paper presents a fully automated brain extraction algorithm that incorporates elastic registration, tissue segmentation, and morphological techniques which are combined by a watershed principle, while paying special attention to the preservation of the boundary between the gray matter and the cerebrospinal fluid. The approach was evaluated by comparison to a manual rater, and compared to several other leading algorithms on a publically available data set of brain images using the Dice coefficient and containment index as performance metrics. The qualitative and quantitative impact of this initial step on subsequent cortical surface generation is also presented. Our experiments demonstrate that our approach is quantitatively better than six other leading algorithms (with statistical significance on modern T1-weighted MR data). We also validated the robustness of the algorithm on a very large data set of over one thousand subjects, and showed that it can replace an experienced manual rater as preprocessing for a cortical surface extraction algorithm with statistically insignificant differences in cortical surface position.

摘要

从 T1 加权结构磁共振图像中提取大脑 - 即大脑皮层、小脑和脑干 - 是神经影像学分析的重要初始步骤。虽然有自动算法可用,但它们对皮质层的不一致处理通常需要手动交互,从而降低了它们的效果。本文提出了一种完全自动化的大脑提取算法,该算法结合了弹性配准、组织分割和形态学技术,并通过分水岭原理进行组合,同时特别注意保留灰质和脑脊液之间的边界。该方法通过与手动评分者进行比较,并在公共脑图像数据集上与其他几种领先算法进行比较,使用骰子系数和包含指数作为性能指标,对其进行了评估。还介绍了此初始步骤对后续皮质表面生成的定性和定量影响。我们的实验表明,我们的方法在定量上优于其他六种领先算法(在现代 T1 加权磁共振数据上具有统计学意义)。我们还在超过一千个主题的大型数据集上验证了算法的稳健性,并表明它可以替代经验丰富的手动评分者作为皮质表面提取算法的预处理,在皮质表面位置方面没有统计学上的显著差异。

相似文献

1
Simple paradigm for extra-cerebral tissue removal: algorithm and analysis.用于去除脑外组织的简单范例:算法与分析。
Neuroimage. 2011 Jun 15;56(4):1982-92. doi: 10.1016/j.neuroimage.2011.03.045. Epub 2011 Mar 31.
10
3D cerebral MR image segmentation using multiple-classifier system.使用多分类器系统的3D脑磁共振图像分割
Med Biol Eng Comput. 2017 Mar;55(3):353-364. doi: 10.1007/s11517-016-1483-z. Epub 2016 May 20.

引用本文的文献

10
Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.基于病理学的全脑分区:在脑室扩大患者中的验证
Patch Based Tech Med Imaging (2017). 2017 Sep;10530:20-28. doi: 10.1007/978-3-319-67434-6_3. Epub 2017 Aug 31.

本文引用的文献

1
Skull stripping using graph cuts.基于图割的颅骨剥离。
Neuroimage. 2010 Jan 1;49(1):225-39. doi: 10.1016/j.neuroimage.2009.08.050. Epub 2009 Sep 2.
2
Comparison of 18F-FDG and PiB PET in cognitive impairment.18F-FDG与PiB正电子发射断层扫描在认知障碍中的比较
J Nucl Med. 2009 Jun;50(6):878-86. doi: 10.2967/jnumed.108.058529. Epub 2009 May 14.
3
Skull stripping based on region growing for magnetic resonance brain images.基于区域生长的磁共振脑图像颅骨剥离
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
6
Volumetric neuroimage analysis extensions for the MIPAV software package.MIPAV软件包的体积神经影像分析扩展
J Neurosci Methods. 2007 Sep 15;165(1):111-21. doi: 10.1016/j.jneumeth.2007.05.024. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验