Guerreiro Andreia P, Fonseca Carlos M, Paquete Luís
CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II, P-3030 290 Coimbra, Portugal
Evol Comput. 2016 Fall;24(3):521-44. doi: 10.1162/EVCO_a_00188. Epub 2016 Jun 15.
Given a nondominated point set [Formula: see text] of size [Formula: see text] and a suitable reference point [Formula: see text], the Hypervolume Subset Selection Problem (HSSP) consists of finding a subset of size [Formula: see text] that maximizes the hypervolume indicator. It arises in connection with multiobjective selection and archiving strategies, as well as Pareto-front approximation postprocessing for visualization and/or interaction with a decision maker. Efficient algorithms to solve the HSSP are available only for the 2-dimensional case, achieving a time complexity of [Formula: see text]. In contrast, the best upper bound available for [Formula: see text] is [Formula: see text]. Since the hypervolume indicator is a monotone submodular function, the HSSP can be approximated to a factor of [Formula: see text] using a greedy strategy. In this article, greedy [Formula: see text]-time algorithms for the HSSP in 2 and 3 dimensions are proposed, matching the complexity of current exact algorithms for the 2-dimensional case, and considerably improving upon recent complexity results for this approximation problem.
给定一个大小为[公式:见文本]的非支配点集[公式:见文本]和一个合适的参考点[公式:见文本],超体积子集选择问题(HSSP)包括找到一个大小为[公式:见文本]的子集,该子集能使超体积指标最大化。它与多目标选择和存档策略相关,也与用于可视化和/或与决策者交互的帕累托前沿近似后处理有关。仅在二维情况下有解决HSSP的高效算法,其时间复杂度为[公式:见文本]。相比之下,[公式:见文本]的最佳可用上界是[公式:见文本]。由于超体积指标是一个单调次模函数,HSSP可以使用贪心策略近似到[公式:见文本]的因子。在本文中,提出了用于二维和三维HSSP的贪心[公式:见文本]时间算法,其复杂度与二维情况下当前的精确算法相匹配,并且相对于该近似问题最近的复杂度结果有了显著改进。