Friedrich Tobias, Neumann Frank, Thyssen Christian
Lehrstuhl Theoretische Informatik I, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
Evol Comput. 2015 Spring;23(1):131-59. doi: 10.1162/EVCO_a_00126. Epub 2014 Sep 26.
Many optimization problems arising in applications have to consider several objective functions at the same time. Evolutionary algorithms seem to be a very natural choice for dealing with multi-objective problems as the population of such an algorithm can be used to represent the trade-offs with respect to the given objective functions. In this paper, we contribute to the theoretical understanding of evolutionary algorithms for multi-objective problems. We consider indicator-based algorithms whose goal is to maximize the hypervolume for a given problem by distributing [Formula: see text] points on the Pareto front. To gain new theoretical insights into the behavior of hypervolume-based algorithms, we compare their optimization goal to the goal of achieving an optimal multiplicative approximation ratio. Our studies are carried out for different Pareto front shapes of bi-objective problems. For the class of linear fronts and a class of convex fronts, we prove that maximizing the hypervolume gives the best possible approximation ratio when assuming that the extreme points have to be included in both distributions of the points on the Pareto front. Furthermore, we investigate the choice of the reference point on the approximation behavior of hypervolume-based approaches and examine Pareto fronts of different shapes by numerical calculations.
应用中出现的许多优化问题必须同时考虑多个目标函数。进化算法似乎是处理多目标问题的一种非常自然的选择,因为这种算法的种群可用于表示相对于给定目标函数的权衡。在本文中,我们致力于对多目标问题的进化算法进行理论理解。我们考虑基于指标的算法,其目标是通过在帕累托前沿上分布[公式:见原文]个点来最大化给定问题的超体积。为了获得关于基于超体积算法行为的新理论见解,我们将它们的优化目标与实现最优乘法近似率的目标进行比较。我们针对双目标问题的不同帕累托前沿形状进行了研究。对于线性前沿类和凸前沿类,我们证明,在假设帕累托前沿上的点的两种分布都必须包含极值点的情况下,最大化超体积可得到最佳可能的近似率。此外,我们研究了参考点的选择对基于超体积方法的近似行为的影响,并通过数值计算检验了不同形状的帕累托前沿。