Suppr超能文献

优化蛋白质晶体冷冻保护的水甘油和乙二醇溶液的热收缩。

Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.

机构信息

Cornell University, Ithaca, NY 14853, USA.

Physics Department, Cornell University, Ithaca, NY 14853, USA.

出版信息

Acta Crystallogr D Struct Biol. 2016 Jun;72(Pt 6):742-52. doi: 10.1107/S2059798316005490. Epub 2016 May 25.

Abstract

The thermal contraction of aqueous cryoprotectant solutions on cooling to cryogenic temperatures is of practical importance in protein cryocrystallography and in biological cryopreservation. In the former case, differential contraction on cooling of protein molecules and their lattice relative to that of the internal and surrounding solvent may lead to crystal damage and the degradation of crystal diffraction properties. Here, the amorphous phase densities of aqueous solutions of glycerol and ethylene glycol at T = 77 K have been determined. Densities with accuracies of <0.5% to concentrations as low as 30%(w/v) were determined by rapidly cooling drops with volumes as small as 70 pl, assessing their optical clarity and measuring their buoyancy in liquid nitrogen-argon solutions. The use of these densities in contraction matching of internal solvent to the available solvent spaces is complicated by several factors, most notably the exclusion of cryoprotectants from protein hydration shells and the expected deviation of the contraction behavior of hydration water from bulk water. The present methods and results will assist in developing rational approaches to cryoprotection and an understanding of solvent behavior in protein crystals.

摘要

水合冷冻保护剂溶液在冷却到低温时的热收缩在蛋白质晶体学和生物冷冻保存中具有实际意义。在前一种情况下,蛋白质分子及其晶格相对于内部和周围溶剂的冷却时的差异收缩可能导致晶体损伤和晶体衍射性质的退化。在这里,测定了甘油和乙二醇水溶液在 T = 77 K 时的非晶相密度。通过快速冷却体积小至 70 pl 的液滴,测定了体积分数低至 30%(w/v)、精度<0.5%的密度,评估其光学清晰度,并测量其在液氮-氩溶液中的浮力。在将内部溶剂与可用溶剂空间进行收缩匹配时,这些密度的使用受到几个因素的影响,最显著的是冷冻保护剂被排除在蛋白质水合壳之外,以及水合水的收缩行为与体相水的预期偏差。本方法和结果将有助于开发合理的冷冻保护方法,并理解蛋白质晶体中的溶剂行为。

相似文献

1
Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.
Acta Crystallogr D Struct Biol. 2016 Jun;72(Pt 6):742-52. doi: 10.1107/S2059798316005490. Epub 2016 May 25.
2
Density and electron density of aqueous cryoprotectant solutions at cryogenic temperatures for optimized cryoprotection and diffraction contrast.
Acta Crystallogr D Struct Biol. 2018 May 1;74(Pt 5):471-479. doi: 10.1107/S2059798318003078. Epub 2018 Apr 27.
4
The Effect of Cryoprotectants Concentration on Ice Crystal Propagation Velocity.
Biopreserv Biobank. 2023 Dec;21(6):547-553. doi: 10.1089/bio.2022.0144. Epub 2022 Nov 16.
5
Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions.
Cryobiology. 2012 Dec;65(3):169-78. doi: 10.1016/j.cryobiol.2012.05.010. Epub 2012 Jun 19.
6
Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.
J Vis Exp. 2017 Jun 28(124):55761. doi: 10.3791/55761.
7
Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):467-474. doi: 10.1016/j.bbamem.2017.10.031. Epub 2017 Oct 31.
8
Immature bovine oocyte cryopreservation: comparison of different associations with ethylene glycol, glycerol and dimethylsulfoxide.
Anim Reprod Sci. 2007 Jun;99(3-4):384-8. doi: 10.1016/j.anireprosci.2006.07.001. Epub 2006 Jul 16.
10
Heat transfer coefficient of cryotop during freezing.
Cryo Letters. 2013 May-Jun;34(3):255-60.

引用本文的文献

1
Interplay of vitrification and ice formation in a cryoprotectant aqueous solution at low temperature.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2112248119. doi: 10.1073/pnas.2112248119. Epub 2022 Mar 18.
2
Solvent flows, conformation changes and lattice reordering in a cold protein crystal.
Acta Crystallogr D Struct Biol. 2019 Nov 1;75(Pt 11):980-994. doi: 10.1107/S2059798319013822. Epub 2019 Oct 31.
3
Ice formation and solvent nanoconfinement in protein crystals.
IUCrJ. 2019 Mar 13;6(Pt 3):346-356. doi: 10.1107/S2052252519001878. eCollection 2019 May 1.
4
The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order.
Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):922-938. doi: 10.1107/S2059798318008793. Epub 2018 Sep 5.
5
Density and electron density of aqueous cryoprotectant solutions at cryogenic temperatures for optimized cryoprotection and diffraction contrast.
Acta Crystallogr D Struct Biol. 2018 May 1;74(Pt 5):471-479. doi: 10.1107/S2059798318003078. Epub 2018 Apr 27.
6
Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.
J Vis Exp. 2017 Jun 28(124):55761. doi: 10.3791/55761.

本文引用的文献

1
Practical macromolecular cryocrystallography.
Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):622-42. doi: 10.1107/S2053230X15008304. Epub 2015 May 27.
2
Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR.
Structure. 2014 Jun 10;22(6):899-910. doi: 10.1016/j.str.2014.04.016. Epub 2014 May 29.
3
Critical droplet theory explains the glass formability of aqueous solutions.
Phys Rev Lett. 2013 Jan 4;110(1):015703. doi: 10.1103/PhysRevLett.110.015703. Epub 2013 Jan 3.
4
Breaking the radiation damage limit with Cryo-SAXS.
Biophys J. 2013 Jan 8;104(1):227-36. doi: 10.1016/j.bpj.2012.11.3817.
5
Global radiation damage: temperature dependence, time dependence and how to outrun it.
J Synchrotron Radiat. 2013 Jan;20(Pt 1):7-13. doi: 10.1107/S0909049512048303. Epub 2012 Nov 29.
6
Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Addendum.
Acta Crystallogr B. 2012 Feb;68(Pt 1):91. doi: 10.1107/S0108768111046908. Epub 2012 Jan 6.
7
Cryoflotation: densities of amorphous and crystalline ices.
J Phys Chem B. 2011 Dec 8;115(48):14167-75. doi: 10.1021/jp204752w. Epub 2011 Aug 31.
8
Hyperquenching for protein cryocrystallography.
J Appl Crystallogr. 2006 Dec 1;39(6):805-811. doi: 10.1107/S0021889806037484.
9
Progress in rational methods of cryoprotection in macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):366-73. doi: 10.1107/S090744490903995X. Epub 2010 Mar 24.
10
Radiation damage in macromolecular crystallography: what is it and why should we care?
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51. doi: 10.1107/S0907444910008656. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验