Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ACS Nano. 2016 Jul 26;10(7):6542-51. doi: 10.1021/acsnano.6b00134. Epub 2016 Jun 27.
Given its highly predictable self-assembly properties, DNA has proven to be an excellent template toward the design of functional materials. Prominent examples include the remarkable complexity provided by DNA origami and single-stranded tile (SST) assemblies, which require hundreds of unique component strands. However, in many cases, the majority of the DNA assembly is purely structural, and only a small "working area" needs to be aperiodic. On the other hand, extended lattices formed by DNA tile motifs require only a few strands; but they suffer from lack of size control and limited periodic patterning. To overcome these limitations, we adopt a templation strategy, where an input strand of DNA dictates the size and patterning of resultant DNA tile structures. To prepare these templating input strands, a sequential growth technique developed in our lab is used, whereby extended DNA strands of defined sequence and length may be generated simply by controlling their order of addition. With these, we demonstrate the periodic patterning of size-controlled double-crossover (DX) and triple-crossover (TX) tile structures, as well as intentionally designed aperiodicity of a DX tile structure. As such, we are able to prepare size-controlled DNA structures featuring aperiodicity only where necessary with exceptional economy and efficiency.
鉴于其高度可预测的自组装特性,DNA 已被证明是设计功能材料的优秀模板。突出的例子包括 DNA 折纸和单链瓦片 (SST) 组装提供的显著复杂性,这需要数百个独特的组件链。然而,在许多情况下,大多数 DNA 组装都是纯粹的结构,只有一个小的“工作区”需要非周期性。另一方面,由 DNA 瓦片图案形成的扩展晶格只需要几条链;但它们存在缺乏尺寸控制和有限的周期性模式的问题。为了克服这些限制,我们采用了模板策略,其中输入 DNA 链决定所得 DNA 瓦片结构的大小和图案。为了制备这些模板输入链,我们使用了我们实验室开发的顺序生长技术,通过该技术,只需控制其添加顺序,就可以生成具有定义序列和长度的扩展 DNA 链。有了这些,我们展示了尺寸可控的双交叉 (DX) 和三交叉 (TX) 瓦片结构的周期性图案化,以及故意设计的 DX 瓦片结构的非周期性。因此,我们能够以出色的经济性和效率,仅在必要时制备具有非周期性的尺寸可控 DNA 结构。