Rougny Adrien, Froidevaux Christine, Calzone Laurence, Paulevé Loïc
Laboratoire de Recherche en Informatique UMR CNRS 8623, Université Paris-Sud, Université Paris-Saclay, Orsay Cedex, 91405, France.
Institut Curie, PSL Research University, INSERM, U900, Mines Paris Tech, Paris, F-75005, France.
BMC Syst Biol. 2016 Jun 16;10(1):42. doi: 10.1186/s12918-016-0285-0.
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far.
We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F.
The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
定性动力学语义通过抽象掉动力学参数,对网络动力学进行粗粒度建模。它们能够捕捉系统动力学的一般特征,如吸引子或可达性属性,针对这些特征存在可扩展的分析方法。系统生物学图形符号过程描述语言(SBGN-PD)已成为表示反应网络的标准。然而,到目前为止,尚未提出考虑SBGN-PD中所有主要特征的定性动力学语义。
我们为SBGN-PD反应网络提出了两种定性动力学语义,即一般语义和故事语义,我们使用异步自动机网络对其进行形式化。一般语义通过考虑SBGN-PD的所有主要特征扩展了反应网络的标准布尔语义,而故事语义允许用一个唯一变量对网络中的多个分子进行建模。所得到的定性模型可以根据动力学性质进行检查,从而相对于生物学知识进行验证。我们将我们的框架应用于对一个大型网络(超过200个节点)的定性动力学进行推理,该网络对RB/E2F调控细胞周期进行建模。
所提出的语义在动态定性模型中为SBGN-PD网络提供了直接的形式化,可使用离散模型的标准工具进一步分析。故事语义中的动力学比一般语义具有更低的维度,并通过强制同一故事中不同节点活动之间的互斥性来修剪多种行为(可视为虚假行为)。总体而言,SBGN-PD的定性语义能够有效地捕捉反应网络模型的重要动力学特征,并可用于进一步完善这些模型。