Bodea Liviu-Gabriel, Eckert Anne, Ittner Lars Matthias, Piguet Olivier, Götz Jürgen
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland.
J Neurochem. 2016 Aug;138 Suppl 1(Suppl Suppl 1):71-94. doi: 10.1111/jnc.13600. Epub 2016 Jun 15.
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
额颞叶变性(FTLD)与异常磷酸化tau蛋白的毒性细胞内聚集体(FTLD-tau)有关。此外,遗传学研究在该疾病的家族性病例中发现了编码tau的MAPT基因突变。在这篇综述中,我们涵盖了tau蛋白在健康和患病大脑中的一系列功能方面,讨论了几种体外和体内模型。介绍了tau蛋白在健康大脑中的结构和功能,强调了其在神经元中的独特分区以及在微管稳定和轴突运输中的作用。此外,还讨论了由tau蛋白驱动的病理学,介绍了当前的概念和相关实验证据。阐述了病理性tau蛋白磷酸化的不同方面、该蛋白的基因组和结构域组织以及其在疾病中的传播,同时介绍了与MAPT相关的突变及其各自的模型。还讨论了与其他转录后修饰相关的功能障碍及其对正常神经元功能(如细胞周期、表观遗传学和突触动力学)的影响,为FTLD-tau病例中的观察结果提供了一个机制性解释,以及治疗干预的可能性。在这篇综述中,我们涵盖了tau蛋白在健康和患病大脑中的功能方面,参考了不同的体外和体内模型。在健康神经元中,tau蛋白是分区化的,在轴突远端浓度较高。货物分子对这种梯度敏感。在额颞叶变性(FTLD-tau)中发现的tau蛋白分布紊乱,对细胞生理有严重影响:tau蛋白在神经元胞体和树突中积累,导致微管解聚和轴突运输受损等后果。tau蛋白形成不溶性聚集体,隔离其他分子,使细胞生理停滞。随着有毒的tau蛋白在树突棘中积累,随后突触退化和突触丧失,神经元通讯逐渐丧失。因此,通过为FTLD-tau病例中的观察结果提供一个机制性解释,出现了治疗干预的可能性。本文是额颞叶痴呆特刊的一部分。