Suppr超能文献

关于建模假设在主动脉血流动力学多尺度、个体化模型中的影响

On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics.

作者信息

Alastruey Jordi, Xiao Nan, Fok Henry, Schaeffter Tobias, Figueroa C Alberto

机构信息

Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK

Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK.

出版信息

J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0073.

Abstract

Simulation of haemodynamics has become increasingly popular within the research community. Irrespective of the modelling approach (zero-dimensional (0D), one-dimensional (1D) or three-dimensional (3D)), in vivo measurements are required to personalize the arterial geometry, material properties and boundary conditions of the computational model. Limitations in in vivo data acquisition often result in insufficient information to determine all model parameters and, hence, arbitrary modelling assumptions. Our goal was to minimize and understand the impact of modelling assumptions on the simulated blood pressure, flow and luminal area waveforms by studying a small region of the systemic vasculature-the upper aorta-and acquiring a rich array of non-invasive magnetic resonance imaging and tonometry data from a young healthy volunteer. We first investigated the effect of different modelling assumptions for boundary conditions and material parameters in a 1D/0D simulation framework. Strategies were implemented to mitigate the impact of inconsistencies in the in vivo data. Average relative errors smaller than 7% were achieved between simulated and in vivo waveforms. Similar results were obtained in a 3D/0D simulation framework using the same inflow and outflow boundary conditions and consistent geometrical and mechanical properties. We demonstrated that accurate subject-specific 1D/0D and 3D/0D models of aortic haemodynamics can be obtained using non-invasive clinical data while minimizing the number of arbitrary modelling decisions.

摘要

血流动力学模拟在研究领域越来越受欢迎。无论采用何种建模方法(零维(0D)、一维(1D)或三维(3D)),都需要进行体内测量,以实现计算模型动脉几何形状、材料属性和边界条件的个性化。体内数据采集的局限性往往导致确定所有模型参数的信息不足,从而产生任意建模假设。我们的目标是通过研究体循环血管系统的一个小区域——升主动脉,并从一名年轻健康志愿者身上获取大量非侵入性磁共振成像和血压测量数据,来最小化并理解建模假设对模拟血压、血流和管腔面积波形的影响。我们首先在一维/零维模拟框架中研究了不同建模假设对边界条件和材料参数的影响。实施了一些策略来减轻体内数据不一致的影响。模拟波形与体内波形之间的平均相对误差小于7%。在使用相同流入和流出边界条件以及一致几何和力学属性的三维/零维模拟框架中也获得了类似结果。我们证明,使用非侵入性临床数据可以获得准确的主动脉血流动力学个体特异性一维/零维和三维/零维模型,同时尽量减少任意建模决策的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaec/4938079/b920e1d58dac/rsif20160073-g1.jpg

相似文献

2
Subject-specific simulation for non-invasive assessment of aortic coarctation: Towards a translational approach.
Med Eng Phys. 2020 Mar;77:69-79. doi: 10.1016/j.medengphy.2019.12.003. Epub 2020 Jan 8.
3
Multi-modality image-based computational analysis of haemodynamics in aortic dissection.
Biomech Model Mechanobiol. 2016 Aug;15(4):857-76. doi: 10.1007/s10237-015-0729-2. Epub 2015 Sep 28.
5
A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
Eur J Cardiothorac Surg. 2013 Apr;43(4):829-38. doi: 10.1093/ejcts/ezs388. Epub 2012 Jul 5.
6
Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations.
Int J Numer Method Biomed Eng. 2023 May;39(5):e3683. doi: 10.1002/cnm.3683. Epub 2023 Jan 23.
7
A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics.
J Biomech. 2021 Dec 2;129:110793. doi: 10.1016/j.jbiomech.2021.110793. Epub 2021 Oct 9.
8
Automated generation of 0D and 1D reduced-order models of patient-specific blood flow.
Int J Numer Method Biomed Eng. 2022 Oct;38(10):e3639. doi: 10.1002/cnm.3639. Epub 2022 Aug 14.
9
Accuracy vs. computational time: translating aortic simulations to the clinic.
J Biomech. 2012 Feb 2;45(3):516-23. doi: 10.1016/j.jbiomech.2011.11.041. Epub 2011 Dec 19.
10
Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations.
Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H222-34. doi: 10.1152/ajpheart.00857.2014. Epub 2015 Apr 17.

引用本文的文献

1
A fast approach to estimating Windkessel model parameters for patient-specific multi-scale CFD simulations of aortic flow.
Comput Fluids. 2023 Jun 15;259. doi: 10.1016/j.compfluid.2023.105894. Epub 2023 Apr 13.
3
Deployment of a digital twin using the coupled momentum method for fluid-structure interaction: A case study for aortic aneurysm.
Comput Biol Med. 2025 May;190:110084. doi: 10.1016/j.compbiomed.2025.110084. Epub 2025 Apr 3.
4
Investigation of hemodynamic bulk flow patterns caused by aortic stenosis using a combined 4D Flow MRI-CFD framework.
PLoS Comput Biol. 2025 Mar 27;21(3):e1012467. doi: 10.1371/journal.pcbi.1012467. eCollection 2025 Mar.
5
CT-derived Fractional Flow Reserve: How, When, and Where to use this Novel Cardiac Imaging Tool.
Curr Cardiol Rev. 2024;20(6):e040624230662. doi: 10.2174/011573403X300384240529124517.
7
Uncertainty quantification of the impact of peripheral arterial disease on abdominal aortic aneurysms in blood flow simulations.
J R Soc Interface. 2024 Apr;21(213):20230656. doi: 10.1098/rsif.2023.0656. Epub 2024 Apr 10.
9
Simulating impaired left ventricular-arterial coupling in aging and disease: a systematic review.
Biomed Eng Online. 2024 Feb 22;23(1):24. doi: 10.1186/s12938-024-01206-2.
10
Accelerated simulation methodologies for computational vascular flow modelling.
J R Soc Interface. 2024 Feb;21(211):20230565. doi: 10.1098/rsif.2023.0565. Epub 2024 Feb 14.

本文引用的文献

1
Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.
Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H969-76. doi: 10.1152/ajpheart.00152.2015. Epub 2015 Jul 10.
2
An Experimental-Computational Study of Catheter Induced Alterations in Pulse Wave Velocity in Anesthetized Mice.
Ann Biomed Eng. 2015 Jul;43(7):1555-70. doi: 10.1007/s10439-015-1272-0. Epub 2015 Feb 20.
3
A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models.
Int J Numer Method Biomed Eng. 2014 Feb;30(2):204-31. doi: 10.1002/cnm.2598. Epub 2013 Sep 24.
4
A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms.
Ann Biomed Eng. 2013 Dec;41(12):2617-29. doi: 10.1007/s10439-013-0854-y. Epub 2013 Jul 2.
6
Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.
J Biomech. 2011 Aug 11;44(12):2250-8. doi: 10.1016/j.jbiomech.2011.05.041. Epub 2011 Jul 2.
7
Validation of a patient-specific one-dimensional model of the systemic arterial tree.
Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1173-82. doi: 10.1152/ajpheart.00821.2010. Epub 2011 May 27.
8
In vitro validation of finite element analysis of blood flow in deformable models.
Ann Biomed Eng. 2011 Jul;39(7):1947-60. doi: 10.1007/s10439-011-0284-7. Epub 2011 Mar 15.
9
External tissue support and fluid-structure simulation in blood flows.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):1-18. doi: 10.1007/s10237-011-0289-z. Epub 2011 Feb 10.
10
Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed.
J Biomech. 2011 Mar 15;44(5):885-91. doi: 10.1016/j.jbiomech.2010.12.002. Epub 2011 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验