Centre for Environmental Geochemistry, School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
Nat Commun. 2016 Jun 17;7:11970. doi: 10.1038/ncomms11970.
Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal 'bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity.
理解气候和生物进化之间的相互作用对于破译生命的敏感性至关重要。在中更新世期间,深海中发生了一次神秘的大规模灭绝事件,有超过 100 种(20%)海底钙质有孔虫消失。有孔虫是一个进化上保守的群体,通常占深海海底真核生物生物量的>50%。在这里,我们使用地球化学和微古生物学在塔斯曼海测试了灭绝假说(温度、腐蚀性和生产力),并从几个全球分布的地点找到了证据,表明灭绝是由浮游植物食物源的变化引起的。颗石藻的进化可能增强了初级生产力的季节性“爆发”性质,并从根本上使其向更具年际变化的状态转变,大约在 0.8 百万年前。我们的结果强调了年际变化作为中更新世全球生物地球化学气候模型的一个潜在新考虑因素,并暗示深海生物群可能对未来生产力的变化敏感。