Yang Ganglong, Huang Luyu, Zhang Jiaxu, Yu Hanjie, Li Zheng, Guan Feng
1. The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi, China;
2. The Key Laboratory of Biological Pesticide and Chemical Biology, Ministry of Education; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China;
Int J Biol Sci. 2016 May 15;12(7):799-811. doi: 10.7150/ijbs.13310. eCollection 2016.
Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles.
细胞成分及其相关生物学过程的区室化对于细胞功能至关重要。蛋白质糖基化是蛋白质功能多样性的基础。动物细胞中聚糖组成的多样性仍知之甚少。我们使用差速离心技术从转移性膀胱YTS1细胞、低级别非肌层浸润性膀胱癌KK47细胞和正常膀胱上皮HCV29细胞的匀浆中分离出四个亚细胞蛋白质组分:微粒体(Mic)、线粒体(Mito)、细胞核(Nuc)和细胞质(Cyto)。然后应用结合凝集素微阵列和质谱(MS)分析的综合策略来评估这四个组分的蛋白质糖基化。凝集素微阵列分析显示,在YTS1细胞中,四个组分在与凝集素LCA、AAL、MPL、WGA和PWM的聚糖结合方面存在显著差异;在KK47细胞中,与STL、Jacalin、VVA、LCA和WGA存在显著差异;在HCV29细胞中,与ConA、GNA、VVA和ACA存在显著差异。通过MS分析在三种细胞的四个组分中共检测到40、32和15种N-聚糖,其中高甘露糖和岩藻糖基化结构占主导,YTS1中有10种N-聚糖、KK47中有5种N-聚糖、HCV29中有7种N-聚糖存在于所有四个组分中;YTS1中有10种N-聚糖、KK47中有16种N-聚糖、HCV29中有3种N-聚糖仅存在于一个组分中。后一类中的聚糖被认为是相应细胞器的潜在标志物。本文所述的综合策略能够以高分辨率和灵敏度详细检查亚细胞组分的糖组,将有助于阐明聚糖和相应糖基化蛋白在不同细胞器中的功能作用。