Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy.
Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy.
Neurobiol Dis. 2016 Oct;94:63-72. doi: 10.1016/j.nbd.2016.06.006. Epub 2016 Jun 16.
TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies.
TDP-43 在 ALS 和 FTLD 患者中通过仍不完全清楚的机制聚集。由于细胞质中的聚集很可能是 TDP-43 核内定位和丧失适当 RNA 结合功能的原因,因此拦截聚集物的形成可能是一种有用的治疗选择。在这项研究中,我们研究了 TDP-43 的 N 端和 C 端结构域在聚集过程中的相对重要性,以及六个半胱氨酸残基在确定不同结构域的解折叠和聚集中的权重。我们报告说,在运动神经元样 NSC34 细胞中,WT 和突变 TDP-43 形成的细胞质内含物仅部分对氧化还原敏感,并且包含至少两种成分,即寡聚物和大聚集体,它们由不同的分子物种组成。两个 N 端半胱氨酸残基有助于寡聚化第一步的成核,然后通过依赖于 RNA 识别基序中的四个半胱氨酸的机制完成。与半胱氨酸无关的大聚集体包含未折叠的蛋白异构体,通过非特异性疏水相互作用结合在一起。有趣的是,截断的异构体仅被捕获在寡聚物中。TDP-43 结构的从头建模、分子动力学和分子对接分析表明,半胱氨酸残基的可及性存在差异,这有助于聚集倾向。我们提出了一个 TDP-43 聚集模型,涉及半胱氨酸依赖性和半胱氨酸独立性阶段,这可能是设计对抗 TDP-43 蛋白病中包含物形成的策略的起点。