Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
J Biol Chem. 2013 May 24;288(21):14886-905. doi: 10.1074/jbc.M113.451849. Epub 2013 Apr 4.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.
TDP-43 是肌萎缩性侧索硬化症(ALS)的一种病理特征。虽然越来越多的证据表明 RNA 识别基序(RRMs)参与了 TDP-43 蛋白病变,但 TDP-43 如何转化为致病形式仍不清楚。为了阐明 RRM1 结构的内稳态在 ALS 发病机制中的作用,我们通过 NMR 监测了高压下 RRM1 的构象。我们首先发现 RRM1 容易聚集,并且在错误折叠时有三个区域的化学位移稳定。此外,对聚集的 RRM1 的质谱分析表明,其中一个区域位于包含两个半胱氨酸(Cys-173 和 Cys-175)的蛋白酶抗性β-折叠上,表明该区域是 RRM1 聚集的核心组装界面。尽管 RRM1 聚集物的一部分由二硫键连接的寡聚物组成,但半胱氨酸(Cys)到丝氨酸(Ser)的取代(C/S)导致 RRM1 的淀粉样纤维和全长 TDP-43 的非二硫键依赖性聚集物形成出乎意料地加速。值得注意的是,具有 RRM1-C/S 的 TDP-43 聚集物需要 C 末端,并且复制了 ALS 的细胞病变,包括定位错误、RNA 剪接受损、泛素化、磷酸化和运动神经元毒性。此外,RRM1-C/S 加重了 C 末端家族性 ALS 相关 TDP-43 突变体的包含物。通过用针对错误折叠相关区域的抗体对 ALS 患者的包涵体和过表达 RRM1-C/S 的培养细胞进行免疫标记,验证了 RRM1-C/S 诱导的 TDP-43 聚集物在 ALS 发病机制中的相关性。我们的结果表明,RRM1 中的半胱氨酸对 TDP-43 的构象至关重要,并且 RRM1 在淀粉样形成区域的异常自组装有助于 TDP-43 在 ALS 中的致病转化。