Vittori Miloš, Srot Vesna, Žagar Kristina, Bussmann Birgit, van Aken Peter A, Čeh Miran, Štrus Jasna
Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
J Struct Biol. 2016 Aug;195(2):227-237. doi: 10.1016/j.jsb.2016.06.008. Epub 2016 Jun 15.
Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear.
暴露于重度机械负荷下的骨骼元素,可能为机械挑战的进化解决方案提供重要见解。我们分析了鼠妇(Porcellio scaber)指节爪的微观结构,并将这些观察结果与通过能量色散X射线光谱法(EDX)、电子能量损失谱(EELS)和选区电子衍射(SAED)对爪的矿物成分分析相关联。特别的是,无定形磷酸钙是爪内表皮中的主要矿物质。与指节基部强烈钙化的外表皮不同,爪的外表皮不含矿物质且高度溴化。指节爪角质层的结构与外骨骼的其他部分截然不同。与节肢动物外骨骼特有的几丁质 - 蛋白质纤维在多个方向上取向的准各向同性结构相反,鼠妇爪内表皮中的几丁质 - 蛋白质纤维和矿物质成分仅轴向取向。综上所述,这些特征表明爪角质层具有高度的结构各向异性和抗断裂性,并且可以解释为对细长薄爪主要轴向负荷的适应。等足目动物爪的纳米级结构可能会为承受重负荷和磨损的耐用机器元件设计带来技术解决方案。