Bielawski Joseph P, Baker Jennifer L, Mingrone Joseph
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada.
Curr Protoc Bioinformatics. 2016 Jun 20;54:6.15.1-6.15.32. doi: 10.1002/cpbi.2.
This unit provides protocols for using the CODEML program from the PAML package to make inferences about episodic natural selection in protein-coding sequences. The protocols cover inference tasks such as maximum likelihood estimation of selection intensity, testing the hypothesis of episodic positive selection, and identifying sites with a history of episodic evolution. We provide protocols for using the rich set of models implemented in CODEML to assess robustness, and for using bootstrapping to assess if the requirements for reliable statistical inference have been met. An example dataset is used to illustrate how the protocols are used with real protein-coding sequences. The workflow of this design, through automation, is readily extendable to a larger-scale evolutionary survey. © 2016 by John Wiley & Sons, Inc.
本单元提供了使用PAML软件包中的CODEML程序推断蛋白质编码序列中 episodic 自然选择的协议。这些协议涵盖了诸如选择强度的最大似然估计、检验 episodic 正选择假设以及识别具有 episodic 进化历史的位点等推断任务。我们提供了使用CODEML中实现的丰富模型集来评估稳健性的协议,以及使用自举法来评估是否满足可靠统计推断要求的协议。使用一个示例数据集来说明如何将这些协议应用于实际的蛋白质编码序列。通过自动化,这种设计的工作流程很容易扩展到更大规模的进化调查。© 2016 约翰威立父子公司。
Curr Protoc Bioinformatics. 2016-6-20
BMC Bioinformatics. 2016-9-6
Methods Mol Biol. 2017
Bioinformatics. 2014-4-15
Mol Biol Evol. 2023-4-4
BMC Bioinformatics. 2010-5-27
Curr Protoc Mol Biol. 2013-1
Front Cell Infect Microbiol. 2022
BMC Evol Biol. 2018-4-11
BMC Evol Biol. 2017-7-6