Larsen Thomas, Ventura Marc, Maraldo Kristine, Triadó-Margarit Xavier, Casamayor Emilio O, Wang Yiming V, Andersen Nils, O'Brien Diane M
Department of Agroecology, Faculty of Sciences and Technology, Aarhus University, Blichers Allé, Postbox 50, 8830, Tjele, Denmark.
Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
J Anim Ecol. 2016 Sep;85(5):1275-85. doi: 10.1111/1365-2656.12563. Epub 2016 Jul 21.
Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts have been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fibre diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fibre diets. Our gene sequencing results of gut microbiota showed that the worms harbour several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial gut symbionts and demonstrates that symbiotic bacteria in the gut lumen appear to function as partners both for symbiotic EAA supplementation and for digestion of insoluble plant fibres.
共生体对营养物质的补充使宿主能够依靠原本可能不足以满足营养需求的资源茁壮成长。细胞内共生体提供的这种营养补贴已得到充分研究;然而,细胞外肠道共生体向宿主补充从头合成的营养物质的情况却鲜有记载,尤其是对于肠道相对未分化的泛食性动物而言。尽管肠道共生体有助于降解宿主原本无法利用的资源,但仅靠这种消化作用无法弥补必需氨基酸(EAA)等常量营养素的饮食不足。记录肠道共生体是否也作为共生EAA补充的伙伴发挥作用很重要,因为一些食碎屑动物如何能够依靠营养不足的饮食生存这一问题仍未得到解决。为了回答共生体与宿主相互作用中这一鲜为人知的营养方面的问题,我们研究了在北极泥炭地中大量存在的蚯蚓。在一项结合了野外和实验室的研究中,我们利用氨基酸的稳定同位素指纹图谱来确定蚯蚓体内氨基酸对细菌、真菌和植物的生物合成来源。从北极泥炭地采集的蚯蚓超过80%的EAA来自细菌。在对隐尾蚓进行的一项对照喂养研究中,当蚯蚓以高纤维饮食为食时,EAA几乎完全来自肠道细菌,而当以低纤维饮食为食时,蚯蚓的大部分EAA来自饮食来源。我们对肠道微生物群的基因测序结果表明,蚯蚓肠道腔内有几种在其饮食和底物中不存在的分类群。几乎所有肠道分类群都是EAA补充的候选者,因为几乎所有分类群都属于能够生物合成EAA的进化枝。我们的研究首次证明了微生物肠道共生体对EAA进行广泛的共生补充,并表明肠道腔内的共生细菌似乎既是共生EAA补充的伙伴,也是不溶性植物纤维消化的伙伴。