Hartings Jed A, Shuttleworth C William, Kirov Sergei A, Ayata Cenk, Hinzman Jason M, Foreman Brandon, Andrew R David, Boutelle Martyn G, Brennan K C, Carlson Andrew P, Dahlem Markus A, Drenckhahn Christoph, Dohmen Christian, Fabricius Martin, Farkas Eszter, Feuerstein Delphine, Graf Rudolf, Helbok Raimund, Lauritzen Martin, Major Sebastian, Oliveira-Ferreira Ana I, Richter Frank, Rosenthal Eric S, Sakowitz Oliver W, Sánchez-Porras Renán, Santos Edgar, Schöll Michael, Strong Anthony J, Urbach Anja, Westover M Brandon, Winkler Maren Kl, Witte Otto W, Woitzik Johannes, Dreier Jens P
1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
2 Mayfield Clinic, Cincinnati, OH, USA.
J Cereb Blood Flow Metab. 2017 May;37(5):1571-1594. doi: 10.1177/0271678X16654495. Epub 2016 Jan 1.
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.
对急性脑损伤后大脑皮质病变如何发展的现代理解,是基于阿里斯蒂德·莱昂对扩散性抑制以及窒息性/缺氧性去极化的历史性发现。几十年来,它们被当作不同的实体来对待,而现在我们认识到,这些事件定义了一个连续的扩散性大量去极化过程,这一概念对于理解它们的病理效应至关重要。在急性严重缺血数分钟内,持续性去极化的开始会引发离子稳态的破坏以及细胞毒性水肿的发展。这些持续性变化在磁共振成像中被诊断为扩散受限,并界定了缺血核心区。在延迟性病变发展过程中,短暂的扩散性去极化在缺血半暗带自发出现,并诱导进一步的持续性去极化和兴奋性毒性损伤,从而逐渐扩大缺血核心区。通过对电生理、血流和细胞毒性水肿的实时监测,已证实这些波在病变发展中的因果作用。扩散性去极化连续体进一步适用于急性皮质病变的其他模型,这表明它是皮质病变发展的一个普遍原则。这些病理生理概念为转化到人类疾病建立了一个工作假设,在人类疾病中,在急性脑损伤时观察到复杂的去极化模式,并且这些模式似乎介导和预示着正在进行的继发性损伤。