Havird Justin C, Mitchell Reed T, Henry Raymond P, Santos Scott R
Department of Biological Sciences, Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA; Dept. of Biology, Colorado State University, Room E106 Anatomy/Zoology Building, Fort Collins, CO 80523, USA.
Dept. of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, AL 36849, USA; Walter Reed Biosystematics Unit, 4210 Silver Hill Rd, Suitland, MD, 20746, USA.
Comp Biochem Physiol Part D Genomics Proteomics. 2016 Sep;19:34-44. doi: 10.1016/j.cbd.2016.06.002. Epub 2016 Jun 11.
Decapods represent one of the most ecologically diverse taxonomic groups within crustaceans, making them ideal to study physiological processes like osmoregulation. However, prior studies have failed to consider the entire transcriptomic response of the gill - the primary organ responsible for ion transport - to changing salinity. Moreover, the molecular genetic differences between non-osmoregulatory and osmoregulatory gill types, as well as the hormonal basis of osmoregulation, remain underexplored. Here, we identified and characterized differentially expressed genes (DEGs) via RNA-Seq in anterior (non-osmoregulatory) and posterior (osmoregulatory) gills during high to low salinity transfer in the blue crab Callinectes sapidus, a well-studied model for crustacean osmoregulation. Overall, we confirmed previous expression patterns for individual ion transport genes and identified novel ones with salinity-mediated expression. Notable, novel DEGs among salinities and gill types for C. sapidus included anterior gills having higher expression of structural genes such as actin and cuticle proteins while posterior gills exhibit elevated expression of ion transport and energy-related genes, with the latter likely linked to ion transport. Potential targets among recovered DEGs for hormonal regulation of ion transport between salinities and gill types included neuropeptide Y and a KCTD16-like protein. Using publically available sequence data, constituents for a "core" gill transcriptome among decapods are presented, comprising genes involved in ion transport and energy conversion and consistent with salinity transfer experiments. Lastly, rarefication analyses lead us to recommend a modest number of sequence reads (~10-15M), but with increased biological replication, be utilized in future DEG analyses of crustaceans.
十足目动物是甲壳类动物中生态多样性最为丰富的分类群体之一,这使得它们成为研究诸如渗透调节等生理过程的理想对象。然而,先前的研究未能考虑鳃——负责离子运输的主要器官——对盐度变化的整体转录组反应。此外,非渗透调节型鳃和渗透调节型鳃之间的分子遗传差异,以及渗透调节的激素基础,仍未得到充分研究。在此,我们通过RNA测序,在美味优游蟹(一种研究充分的甲壳类动物渗透调节模型)从高盐度转移到低盐度的过程中,鉴定并表征了前鳃(非渗透调节型)和后鳃(渗透调节型)中差异表达的基因(DEG)。总体而言,我们证实了先前单个离子运输基因的表达模式,并鉴定出了具有盐度介导表达的新基因。值得注意的是,美味优游蟹在不同盐度和鳃类型之间的新DEG包括,前鳃中肌动蛋白和角质层蛋白等结构基因的表达较高,而后鳃中离子运输和能量相关基因的表达升高,后者可能与离子运输有关。在恢复的DEG中,盐度和鳃类型之间离子运输激素调节的潜在靶点包括神经肽Y和一种类KCTD16蛋白。利用公开可用的序列数据,我们展示了十足目动物“核心”鳃转录组的组成部分,其中包括参与离子运输和能量转换的基因,并且与盐度转移实验结果一致。最后,稀疏分析使我们建议,在未来甲壳类动物的DEG分析中,使用适度数量的序列读数(约1000万 - 1500万),但要增加生物学重复次数。