Suppr超能文献

破骨细胞——骨骼健康与疾病的关键因素。

Osteoclasts-Key Players in Skeletal Health and Disease.

机构信息

Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine.

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.

出版信息

Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.MCHD-0011-2015.

Abstract

The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.

摘要

破骨细胞 (OC) 由早期髓系前体分化而来,这是一个受到骨微环境中多种介质严格调控的过程。一旦生成,成熟 OC 的功能取决于受骨侧膜上含有 αvβ3 的复合物控制的细胞骨架特征,以及质子和酸性蛋白酶组织蛋白酶 K 的分泌。OC 还与骨微环境中的其他细胞(包括成骨细胞和免疫细胞)有重要的相互作用。OC 分化和/或功能的失调可导致骨病理学。事实上,OC 分化和激活的许多成分已被成功地作为治疗靶点。然而,OC 前体的身份和可塑性以及控制 OC 命运的基本网络之间的相互作用仍存在疑问。在这篇综述中,我们总结了 OC 生物学的关键原则,并强调了最近发现的在稳态和疾病状态下调节 OC 发育和功能的机制。

相似文献

1
Osteoclasts-Key Players in Skeletal Health and Disease.
Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.MCHD-0011-2015.
3
TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function.
J Bone Miner Res. 2006 Feb;21(2):237-45. doi: 10.1359/JBMR.051016. Epub 2005 Oct 20.
6
Augmented LPS responsiveness in type 1 diabetes-derived osteoclasts.
J Cell Physiol. 2013 Feb;228(2):349-61. doi: 10.1002/jcp.24138.
7
Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12385-90. doi: 10.1073/pnas.1216082110. Epub 2013 Jul 5.
8
Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14138-14143. doi: 10.1073/pnas.1900881116. Epub 2019 Jun 25.
9
Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells.
Free Radic Res. 2020 Dec;54(11-12):894-905. doi: 10.1080/10715762.2020.1742896. Epub 2020 Mar 31.
10
Expression analysis of nha-oc/NHA2: a novel gene selectively expressed in osteoclasts.
Gene Expr Patterns. 2007 Oct;7(8):846-51. doi: 10.1016/j.modgep.2007.07.002. Epub 2007 Aug 14.

引用本文的文献

1
Bone Marrow Adipoq-lineage Progenitors: an Emerging Osteoclast Niche Cell Population.
Curr Osteoporos Rep. 2025 Sep 12;23(1):37. doi: 10.1007/s11914-025-00933-2.
2
Association of certain biochemical parameters related to bone cycle with genotype in MPS IIIB patients.
Turk J Med Sci. 2025 Jan 7;55(1):328-336. doi: 10.55730/1300-0144.5973. eCollection 2025.
3
Molecular and functional mapping of Plekhm1-Rab7 interaction in osteoclasts.
JBMR Plus. 2024 Mar 12;8(5):ziae034. doi: 10.1093/jbmrpl/ziae034. eCollection 2024 May.
4
Conditional Loss of MEF2C Expression in Osteoclasts Leads to a Sex-Specific Osteopenic Phenotype.
Int J Mol Sci. 2023 Aug 11;24(16):12686. doi: 10.3390/ijms241612686.
5
The dual role of autophagy in periprosthetic osteolysis.
Front Cell Dev Biol. 2023 Mar 24;11:1123753. doi: 10.3389/fcell.2023.1123753. eCollection 2023.
6
A Rapid Protocol for Direct Isolation of Osteoclast Lineage Cells from Mouse Bone Marrow.
Bio Protoc. 2022 Mar 5;12(5):e4338. doi: 10.21769/BioProtoc.4338.
7
Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance.
RSC Adv. 2019 Jan 14;9(3):1696-1704. doi: 10.1039/c8ra09640f. eCollection 2019 Jan 9.
9
Fracture healing is delayed in the absence of gasdermin-interleukin-1 signaling.
Elife. 2022 Mar 4;11:e75753. doi: 10.7554/eLife.75753.
10
Novel Elongator Protein 2 Inhibitors Mitigating Tumor Necrosis Factor- Induced Osteogenic Differentiation Inhibition.
Biomed Res Int. 2021 Nov 22;2021:3664564. doi: 10.1155/2021/3664564. eCollection 2021.

本文引用的文献

1
Diacylglycerol Kinase ζ (DGKζ) Is a Critical Regulator of Bone Homeostasis Via Modulation of c-Fos Levels in Osteoclasts.
J Bone Miner Res. 2015 Oct;30(10):1852-63. doi: 10.1002/jbmr.2533. Epub 2015 Aug 26.
2
Myeloid lineage skewing due to exacerbated NF-κB signaling facilitates osteopenia in Scurfy mice.
Cell Death Dis. 2015 Apr 16;6(4):e1723. doi: 10.1038/cddis.2015.87.
3
Bone-targeted therapy in metastatic breast cancer - all well-established knowledge?
Breast Care (Basel). 2014 Oct;9(5):323-30. doi: 10.1159/000368710.
4
Novel therapeutic targets in rheumatoid arthritis.
Trends Pharmacol Sci. 2015 Apr;36(4):189-95. doi: 10.1016/j.tips.2015.02.001. Epub 2015 Feb 27.
6
A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells.
J Bone Miner Res. 2015 Aug;30(8):1508-22. doi: 10.1002/jbmr.2472. Epub 2015 May 21.
7
Estrogen and bone health in men and women.
Steroids. 2015 Jul;99(Pt A):11-5. doi: 10.1016/j.steroids.2014.12.010. Epub 2014 Dec 30.
8
Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis.
J Cell Biol. 2015 Jan 5;208(1):125-36. doi: 10.1083/jcb.201410123. Epub 2014 Dec 29.
9
Regulation of NFATc1 in Osteoclast Differentiation.
J Bone Metab. 2014 Nov;21(4):233-41. doi: 10.11005/jbm.2014.21.4.233. Epub 2014 Nov 30.
10
NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms.
FASEB J. 2015 Apr;29(4):1269-79. doi: 10.1096/fj.14-264804. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验