Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.
Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
Stem Cells. 2016 Nov;34(11):2733-2743. doi: 10.1002/stem.2440. Epub 2016 Jul 8.
Bone homeostasis comprises the balance between bone-forming osteoblasts and bone-resorbing osteoclasts (OCs), with an acceleration of osteoclastic bone resorption leading to osteoporosis. OCs can be generated from bone marrow cells (BMCs) under the tightly regulated local bone environment. However, it remained difficult to identify the critical cells responsible for providing an osteoclastogenesis niche. In this study, we used a fluorescence-activated cell sorting technique to determine the cell populations important for forming an appropriate microenvironment for osteoclastogenesis and to verify the associated interactions between osteoclast precursor cells and non-OCs. We isolated and removed a small cell population specific for osteoclastogenesis (CXCR4 CD45 ) from mouse BMCs and cultured the remaining cells with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage-colony stimulating factor. The resulting cultures showed significantly less large osteoclast formation. Quantitative RT-PCR analysis revealed that these CXCR4 CD45 cells expressed low levels of RANK and RANKL, but high levels of critical chemokines including stromal cell derived factor 1 (SDF-1), chemokine (C-X-C motif) ligand 7 (CXCL7), and chemokine (C-X3-C motif) ligand 1 (CX3CL1). Furthermore, an SDF-1-specific antibody strongly suppressed OC formation in RAW264.7 cells and antibodies against SDF-1, CXCL7, and CX3CL1 suppressed OC formation in BMCs. These results suggest that isolated CXCR4 CD45 cells support an appropriate microenvironment for osteoclastogenesis with a direct effect on the cells expressing SDF-1, CXCL7, and CX3CL1 receptors. The regulation of CXCR4 CD45 cell function might therefore inform therapeutic strategies for diseases involving loss of bone homeostasis. Stem Cells 2016;34:2733-2743.
骨稳态包括成骨细胞和成骨细胞(OCs)之间的平衡,破骨细胞骨吸收的加速导致骨质疏松症。OCs 可以在受严格调节的局部骨环境下从骨髓细胞(BMCs)中产生。然而,确定负责提供破骨细胞发生龛的关键细胞仍然很困难。在这项研究中,我们使用荧光激活细胞分选技术来确定对于形成适当的破骨细胞发生微环境重要的细胞群体,并验证破骨细胞前体细胞与非 OC 之间的相关相互作用。我们从小鼠 BMC 中分离并去除了一个特定于破骨细胞发生的小细胞群体(CXCR4 CD45),并在核因子-kappa B 配体(RANKL)和巨噬细胞集落刺激因子存在的情况下培养剩余的细胞。所得培养物显示出明显较少的大破骨细胞形成。定量 RT-PCR 分析表明,这些 CXCR4 CD45 细胞表达低水平的 RANK 和 RANKL,但高水平的关键趋化因子,包括基质细胞衍生因子 1(SDF-1),趋化因子(C-X-C 基序)配体 7(CXCL7)和趋化因子(C-X3-C 基序)配体 1(CX3CL1)。此外,SDF-1 特异性抗体强烈抑制 RAW264.7 细胞中的 OC 形成,而针对 SDF-1、CXCL7 和 CX3CL1 的抗体抑制 BMC 中的 OC 形成。这些结果表明,分离的 CXCR4 CD45 细胞支持适当的破骨细胞发生微环境,并且对表达 SDF-1、CXCL7 和 CX3CL1 受体的细胞具有直接影响。因此,调节 CXCR4 CD45 细胞功能可能为涉及骨稳态丧失的疾病提供治疗策略。干细胞 2016;34:2733-2743。