Bryan Chase D, Chien Chi-Bin, Kwan Kristen M
Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
Dev Biol. 2016 Aug 15;416(2):324-37. doi: 10.1016/j.ydbio.2016.06.025. Epub 2016 Jun 20.
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1(UW1)) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1(UW1) mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis.
脊椎动物的眼睛通过一系列复杂的形态发生事件形成。视泡外翻并经历形态转变,形成视杯,其中神经视网膜和视网膜色素上皮包裹晶状体。长期以来,人们一直知道在整个过程中,一个复杂的、富含糖蛋白的细胞外基质层围绕着发育中的视杯,但其基质及其特定分子成分的功能仍不清楚。先前的研究确定了层粘连蛋白细胞外基质在眼睛发育的特定步骤中发挥作用,包括视泡外翻、晶状体分化和视网膜神经节细胞极化,但尚不清楚层粘连蛋白在视泡外翻初始步骤之后的视杯形成早期过程中可能发挥什么作用。在这里,我们使用斑马鱼lama1突变体(lama1(UW1))来确定层粘连蛋白在视杯形态发生过程中的功能。通过实时成像,我们惊讶地发现,层粘连蛋白的缺失以时空特异性方式对视粘着斑组装产生不同影响,并且视杯形态发生的多个步骤都需要层粘连蛋白,包括视柄收缩、内陷和球形晶状体的形成。单细胞行为和细胞形状变化不需要层粘连蛋白。相反,在lama1(UW1)突变体中,上皮极性的丧失和粘附的改变导致组织结构缺陷和无序视网膜的形成。这些结果表明,层粘连蛋白细胞外基质在视杯形态发生过程中发挥多种关键作用,调节粘附和极性以建立和维持组织结构。