Suppr超能文献

对高原适应调控机制的功能基因组学洞察

Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.

作者信息

Storz Jay F, Cheviron Zachary A

机构信息

School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.

Division of Biological Sciences, University of Montana, Missoula, MT, USA.

出版信息

Adv Exp Med Biol. 2016;903:113-28. doi: 10.1007/978-1-4899-7678-9_8.

Abstract

Recent studies of indigenous human populations at high altitude have provided proof-of-principle that genome scans of DNA polymorphism can be used to identify candidate loci for hypoxia adaptation. When integrated with experimental analyses of physiological phenotypes, genome-wide surveys of DNA polymorphism and tissue-specific transcriptional profiles can provide insights into actual mechanisms of adaptation. It has been suggested that adaptive phenotypic evolution is largely mediated by cis-regulatory changes in genes that are located at integrative control points in regulatory networks. This hypothesis can be tested by conducting transcriptomic analyses of hypoxic signaling pathways in conjunction with experimental measures of vascular oxygen supply and metabolic pathway flux. Such studies may reveal whether the architecture of gene regulatory networks can be used to predict which loci (and which types of loci) are likely to be "hot spots" for adaptive physiological evolution. Functional genomic studies of deer mice (Peromyscus maniculatus) demonstrate how the integrated analysis of variation in tissue-specific transcriptomes, whole-animal physiological performance, and various subordinate traits can yield insights into the mechanistic underpinnings of high-altitude adaptation.

摘要

近期对高海拔地区土著人群的研究提供了原理证明,即DNA多态性的基因组扫描可用于识别低氧适应的候选基因座。当与生理表型的实验分析相结合时,DNA多态性的全基因组调查和组织特异性转录谱可提供对实际适应机制的见解。有人提出,适应性表型进化在很大程度上是由位于调控网络整合控制点的基因的顺式调控变化介导的。这一假设可以通过结合血管氧气供应和代谢途径通量的实验测量,对低氧信号通路进行转录组分析来检验。此类研究可能揭示基因调控网络的结构是否可用于预测哪些基因座(以及哪些类型的基因座)可能是适应性生理进化的“热点”。对鹿鼠(白足鼠)的功能基因组研究表明,对组织特异性转录组变异、全动物生理性能和各种次要性状进行综合分析,如何能够深入了解高海拔适应的机制基础。

相似文献

1
Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.
Adv Exp Med Biol. 2016;903:113-28. doi: 10.1007/978-1-4899-7678-9_8.
4
Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8635-40. doi: 10.1073/pnas.1120523109. Epub 2012 May 14.
5
Physiological Genomics of Adaptation to High-Altitude Hypoxia.
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.
8
High altitude adaptation: genetic perspectives.
High Alt Med Biol. 2008 Summer;9(2):140-7. doi: 10.1089/ham.2007.1076.
9
Genetics of human origin and evolution: high-altitude adaptations.
Curr Opin Genet Dev. 2016 Dec;41:8-13. doi: 10.1016/j.gde.2016.06.018. Epub 2016 Aug 6.

引用本文的文献

3
Adaptive structural and functional evolution of the placenta protects fetal growth in high-elevation deer mice.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2218049120. doi: 10.1073/pnas.2218049120. Epub 2023 Jun 12.
4
Parallel genomic responses to historical climate change and high elevation in East Asian songbirds.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2023918118.
5
Fetal growth, high altitude, and evolutionary adaptation: a new perspective.
Am J Physiol Regul Integr Comp Physiol. 2021 Sep 1;321(3):R279-R294. doi: 10.1152/ajpregu.00067.2021. Epub 2021 Jul 14.
6
Adaptive introgression of the beta-globin cluster in two Andean waterfowl.
Heredity (Edinb). 2021 Jul;127(1):107-123. doi: 10.1038/s41437-021-00437-6. Epub 2021 Apr 26.
7
High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology.
Mol Biol Evol. 2021 Jun 25;38(7):2677-2691. doi: 10.1093/molbev/msab064.
8
Limited Evidence for Parallel Evolution Among Desert-Adapted Peromyscus Deer Mice.
J Hered. 2021 May 24;112(3):286-302. doi: 10.1093/jhered/esab009.
9
Physiological Genomics of Adaptation to High-Altitude Hypoxia.
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.
10
High-altitude rodents have abundant collaterals that protect against tissue injury after cerebral, coronary and peripheral artery occlusion.
J Cereb Blood Flow Metab. 2021 Apr;41(4):731-744. doi: 10.1177/0271678X20942609. Epub 2020 Jul 23.

本文引用的文献

2
Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.
PLoS Genet. 2015 Dec 4;11(12):e1005681. doi: 10.1371/journal.pgen.1005681. eCollection 2015 Dec.
3
Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13958-63. doi: 10.1073/pnas.1507300112. Epub 2015 Oct 12.
4
Targeted capture in evolutionary and ecological genomics.
Mol Ecol. 2016 Jan;25(1):185-202. doi: 10.1111/mec.13304. Epub 2015 Jul 30.
5
Genetic approaches in comparative and evolutionary physiology.
Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R197-214. doi: 10.1152/ajpregu.00100.2015. Epub 2015 Jun 3.
6
7
High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice.
Am J Physiol Regul Integr Comp Physiol. 2015 May 1;308(9):R779-91. doi: 10.1152/ajpregu.00362.2014. Epub 2015 Feb 18.
10
A genetic mechanism for Tibetan high-altitude adaptation.
Nat Genet. 2014 Sep;46(9):951-6. doi: 10.1038/ng.3067. Epub 2014 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验