School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA; email:
Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA; email:
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.
Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.
对人类和其他高海拔动物的群体基因组研究产生了许多关于可能有助于低氧适应的基因和途径的假说。未来的进展需要对这些假说进行实验测试,以确定因果机制。迄今为止的研究说明了从候选基因清单到选择表型靶标的困难,因为很难确定观察到的基因型-表型关联是否反映了因果效应,还是由于通过体内平衡调节相关的其他性状变化的次要后果。最近对高山模型(如鹿鼠)的研究揭示了呼吸、心血管和代谢特征的可塑性和进化变化,这些变化有助于低氧环境下的有氧表现能力,对组织特异性转录组的分析确定了调节网络的变化,这些变化介导了生理表型的适应性变化。在这里,我们综合了最近的研究结果,并讨论了在基因组学和生理学交叉点的高海拔适应研究中获得的经验教训。