Suppr超能文献

适应高原低氧的生理基因组学。

Physiological Genomics of Adaptation to High-Altitude Hypoxia.

机构信息

School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA; email:

Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA; email:

出版信息

Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.

Abstract

Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.

摘要

对人类和其他高海拔动物的群体基因组研究产生了许多关于可能有助于低氧适应的基因和途径的假说。未来的进展需要对这些假说进行实验测试,以确定因果机制。迄今为止的研究说明了从候选基因清单到选择表型靶标的困难,因为很难确定观察到的基因型-表型关联是否反映了因果效应,还是由于通过体内平衡调节相关的其他性状变化的次要后果。最近对高山模型(如鹿鼠)的研究揭示了呼吸、心血管和代谢特征的可塑性和进化变化,这些变化有助于低氧环境下的有氧表现能力,对组织特异性转录组的分析确定了调节网络的变化,这些变化介导了生理表型的适应性变化。在这里,我们综合了最近的研究结果,并讨论了在基因组学和生理学交叉点的高海拔适应研究中获得的经验教训。

相似文献

1
Physiological Genomics of Adaptation to High-Altitude Hypoxia.
Annu Rev Anim Biosci. 2021 Feb 16;9:149-171. doi: 10.1146/annurev-animal-072820-102736. Epub 2020 Nov 23.
3
Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.
Adv Exp Med Biol. 2016;903:113-28. doi: 10.1007/978-1-4899-7678-9_8.
4
Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8635-40. doi: 10.1073/pnas.1120523109. Epub 2012 May 14.
5
High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology.
Mol Biol Evol. 2021 Jun 25;38(7):2677-2691. doi: 10.1093/molbev/msab064.
6
Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110865. doi: 10.1016/j.cbpa.2020.110865. Epub 2020 Dec 7.
9
Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
Evolution. 2018 Dec;72(12):2712-2727. doi: 10.1111/evo.13626. Epub 2018 Nov 1.

引用本文的文献

1
Genome-wide selection signal analysis reveals the adaptability of Tibetan sheep to high altitudes.
Front Vet Sci. 2025 Aug 14;12:1632017. doi: 10.3389/fvets.2025.1632017. eCollection 2025.
3
4
Evolved changes in reflex control of the cardiovascular system in deer mice native to high altitude.
J Exp Biol. 2025 Jun 15;228(12). doi: 10.1242/jeb.249483. Epub 2025 Jun 18.
5
Gene expression plasticity in response to rapid and extreme elevation changes in Perdix hodgsoniae (Tibetan Partridge).
Ornithol Appl. 2025 Feb 5;127(1). doi: 10.1093/ornithapp/duae050. Epub 2024 Sep 23.
9
[Research Advances in the Roles of High-Altitude Hypoxic Stress in Hepatocellular Carcinoma].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Nov 20;55(6):1436-1445. doi: 10.12182/20241160605.
10
[Body Function Changes and Prevention Strategies in High-Altitude Environment].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Nov 20;55(6):1446-1453. doi: 10.12182/20241160104.

本文引用的文献

1
Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia.
Annu Rev Ecol Evol Syst. 2019 Nov;50:503-526. doi: 10.1146/annurev-ecolsys-110218-025014. Epub 2019 Sep 3.
2
Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
J Physiol. 2020 Dec;598(23):5411-5426. doi: 10.1113/JP280298. Epub 2020 Sep 14.
3
Discovery of the world's highest-dwelling mammal.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18169-18171. doi: 10.1073/pnas.2005265117. Epub 2020 Jul 16.
4
Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope.
Sci Adv. 2020 Jun 17;6(25):eabb5447. doi: 10.1126/sciadv.abb5447. eCollection 2020 Jun.
5
Coordinated changes across the O transport pathway underlie adaptive increases in thermogenic capacity in high-altitude deer mice.
Proc Biol Sci. 2020 May 27;287(1927):20192750. doi: 10.1098/rspb.2019.2750. Epub 2020 May 20.
6
Tibetan , an allele with loss-of-function properties.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12230-12238. doi: 10.1073/pnas.1920546117. Epub 2020 May 15.
8
Association of gene with high aerobic capacity of Peruvian Quechua at high altitude.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24006-24011. doi: 10.1073/pnas.1906171116. Epub 2019 Nov 11.
10
Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice ().
J Exp Biol. 2019 Oct 31;222(Pt 21):jeb210963. doi: 10.1242/jeb.210963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验