Suppr超能文献

利用单细胞转录组数据对干细胞身份进行从头预测。

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

作者信息

Grün Dominic, Muraro Mauro J, Boisset Jean-Charles, Wiebrands Kay, Lyubimova Anna, Dharmadhikari Gitanjali, van den Born Maaike, van Es Johan, Jansen Erik, Clevers Hans, de Koning Eelco J P, van Oudenaarden Alexander

机构信息

Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.

Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.

出版信息

Cell Stem Cell. 2016 Aug 4;19(2):266-277. doi: 10.1016/j.stem.2016.05.010. Epub 2016 Jun 23.

Abstract

Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

摘要

像肠道、皮肤和血液这样的成体有丝分裂组织在生物体的整个生命过程中都经历着持续的更新。了解干细胞的身份对于理解组织稳态及其在疾病时的异常情况至关重要。在这里,我们提出了一种从单细胞转录组数据推导谱系树的计算方法。通过利用树的拓扑结构和转录组组成,我们建立了StemID,这是一种用于在群体中所有可检测细胞类型中识别干细胞的算法。我们证明StemID可以识别出两个已知的成体干细胞群体,即小肠中的Lgr5 +细胞和骨髓中的造血干细胞。我们将StemID应用于预测人类胰腺中候选多能细胞群体,胰腺是一种周转动态很大程度上未被表征的组织。我们希望StemID将通过为生物学后续研究和验证提供具体标记,加速对新型干细胞的搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed08/4985539/e795281491b2/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验