Economo Michael N, Hansen Kyle R, Wachowiak Matt
Brain Institute and Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
Brain Institute and Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
Neuron. 2016 Jul 20;91(2):397-411. doi: 10.1016/j.neuron.2016.06.001. Epub 2016 Jun 23.
Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles.
抑制作用是神经回路信息处理的基础。在嗅球(OB)中,肾小球是气味信息编码的功能单元,但肾小球之间的抑制作用却鲜有研究。我们使用双光子钙成像技术对麻醉和清醒小鼠的嗅球输出神经元(二尖瓣和簇状细胞,即MT细胞)中的气味诱发兴奋和抑制进行可视化。MT细胞反应极性均匀地映射到离散的OB肾小球,这使我们能够分析抑制作用如何相对于肾小球图谱塑造OB输出。气味剂仅在可检测到抑制作用的一部分肾小球中引发独特的抑制模式,并且兴奋和抑制的肾小球在空间上相互交织。二元混合物实验表明,肾小球间抑制可抑制兴奋性二尖瓣细胞对气味剂的反应。这些结果表明,抑制性OB回路非线性地转换气味表征,并支持肾小球集合之间选择性和非随机抑制的模型。