Suppr超能文献

缺氧在大鼠胶质瘤模型中调节组织因子途径信号元件的表达。

Hypoxia regulates the expression of tissue factor pathway signaling elements in a rat glioma model.

作者信息

Monteiro Robson Q, Lima Luize G, Gonçalves Nathália P, DE Souza Mayara R Arruda, Leal Ana C, Demasi Marcos A Almeida, Sogayar Mari C, Carneiro-Lobo Tatiana C

机构信息

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Bone Marrow Transplantation Center, National Institute of Cancer, Rio de Janeiro, RJ 20230-130, Brazil.

出版信息

Oncol Lett. 2016 Jul;12(1):315-322. doi: 10.3892/ol.2016.4593. Epub 2016 May 17.

Abstract

Hypoxia and necrosis are fundamental features of glioma, and their emergence is critical for the rapid biological progression of this fatal tumor. The presence of vaso-occlusive thrombus is higher in grade IV tumors [glioblastoma multiforme (GBM)] compared with lower grade tumors, suggesting that the procoagulant properties of the tumor contribute to its aggressive behavior, as well as the establishment of tumor hypoxia and necrosis. Tissue factor (TF), the primary cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Phosphatase and tensin homolog (PTEN) loss and hypoxia are two common alterations observed in glioma that may be responsible for TF upregulation. In the present study, ST1 and P7 rat glioma lines, with different levels of aggressiveness, were comparatively analyzed with the aim of identifying differences in procoagulant mechanisms. The results indicated that P7 cells display potent procoagulant activity compared with ST1 cells. Flow cytometric analysis showed less pronounced levels of TF in ST1 cells compared with P7 cells. Notably, P7 cells supported factor X (FX) activation via factor VIIa, whereas no significant FXa generation was observed in ST1 cells. Furthermore, the exposure of phosphatidylserine on the surface of P7 and ST1 cells was investigated. The results supported the assembly of prothrombinase complexes, accounting for the production of thrombin. Furthermore, reverse transcription-quantitative polymerase chain reaction showed that CoCl (known to induce a hypoxic-like stress) led to an upregulation of TF levels in P7 and ST1 cells. Therefore, increased TF expression in P7 cells was accompanied by increased TF procoagulant activity. In addition, hypoxia increased the shedding of procoagulant TF-bearing microvesicles in both cell lines. Finally, hypoxic stress induced by treatment with CoCl upregulated the expression of the PAR1 receptor in both P7 and ST1 cells. In addition to PAR1, P7, but not ST1 cells, expressed higher levels of PAR2 under hypoxic stress. Thus, modulating these molecular interactions may provide additional insights for the development of more efficient therapeutic strategies against aggressive glioma.

摘要

缺氧和坏死是胶质瘤的基本特征,它们的出现对于这种致命肿瘤的快速生物学进展至关重要。与低级别肿瘤相比,IV级肿瘤[多形性胶质母细胞瘤(GBM)]中血管闭塞性血栓的存在更为常见,这表明肿瘤的促凝特性有助于其侵袭性行为以及肿瘤缺氧和坏死的形成。组织因子(TF)是凝血的主要细胞启动因子,在GBM中过度表达,可能有利于形成血栓性微环境。磷酸酶和张力蛋白同源物(PTEN)缺失和缺氧是在胶质瘤中观察到的两种常见改变,可能是TF上调的原因。在本研究中,对具有不同侵袭程度的ST1和P7大鼠胶质瘤细胞系进行了比较分析,旨在确定促凝机制的差异。结果表明,与ST1细胞相比,P7细胞表现出强大的促凝活性。流式细胞术分析显示,与P7细胞相比,ST1细胞中TF水平较低。值得注意的是,P7细胞通过因子VIIa支持因子X(FX)激活,而在ST1细胞中未观察到明显的FXa生成。此外,还研究了P7和ST1细胞表面磷脂酰丝氨酸的暴露情况。结果支持凝血酶原酶复合物的组装,这解释了凝血酶的产生。此外,逆转录-定量聚合酶链反应显示,CoCl(已知可诱导类似缺氧的应激)导致P7和ST1细胞中TF水平上调。因此,P7细胞中TF表达的增加伴随着TF促凝活性的增加。此外,缺氧增加了两种细胞系中携带促凝TF的微泡的脱落。最后,用CoCl处理诱导的缺氧应激上调了P7和ST1细胞中PAR1受体的表达。除了PAR1,在缺氧应激下,P7细胞而非ST1细胞表达更高水平的PAR2。因此,调节这些分子相互作用可能为开发更有效的侵袭性胶质瘤治疗策略提供更多见解。

相似文献

1
Hypoxia regulates the expression of tissue factor pathway signaling elements in a rat glioma model.
Oncol Lett. 2016 Jul;12(1):315-322. doi: 10.3892/ol.2016.4593. Epub 2016 May 17.
3
PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma.
Cancer Res. 2005 Feb 15;65(4):1406-13. doi: 10.1158/0008-5472.CAN-04-3376.
4
On the molecular mechanisms for the highly procoagulant pattern of C6 glioma cells.
J Thromb Haemost. 2006 Jul;4(7):1546-52. doi: 10.1111/j.1538-7836.2006.01985.x.
5
Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa.
Proc Natl Acad Sci U S A. 2000 May 9;97(10):5255-60. doi: 10.1073/pnas.97.10.5255.
6
Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model.
J Thromb Haemost. 2009 Nov;7(11):1855-64. doi: 10.1111/j.1538-7836.2009.03553.x. Epub 2009 Jul 17.
8
Thrombotic characteristics of extracellular vesicles derived from prostate cancer cells.
Prostate. 2018 Sep;78(13):953-961. doi: 10.1002/pros.23653. Epub 2018 May 15.
9
Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis.
Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1456-62. doi: 10.1161/ATVBAHA.107.142539. Epub 2007 Mar 15.
10
The regulation of clotting factors.
Crit Rev Eukaryot Gene Expr. 1997;7(3):241-80. doi: 10.1615/critreveukargeneexpr.v7.i3.40.

引用本文的文献

2
Identification of a coagulation-related gene signature for predicting prognosis in recurrent glioma.
Discov Oncol. 2024 Nov 11;15(1):642. doi: 10.1007/s12672-024-01520-0.
4
The long non-coding RNA and its binding partner PTBP1 regulate exon 5 skipping of transcripts in group 4 medulloblastomas.
Neurooncol Adv. 2022 Aug 2;4(1):vdac120. doi: 10.1093/noajnl/vdac120. eCollection 2022 Jan-Dec.
5
EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia.
JCI Insight. 2022 Jul 22;7(14):e157701. doi: 10.1172/jci.insight.157701.
6
P2Y Purinergic Receptor and Brain Tumors: Implications on Glioma Microenvironment.
Molecules. 2021 Oct 12;26(20):6146. doi: 10.3390/molecules26206146.
8
Clotting disorder in severe acute respiratory syndrome coronavirus 2.
Rev Med Virol. 2021 May;31(3):e2177. doi: 10.1002/rmv.2177. Epub 2020 Oct 6.
9
Beyond thrombosis: the impact of tissue factor signaling in cancer.
J Hematol Oncol. 2020 Jul 14;13(1):93. doi: 10.1186/s13045-020-00932-z.

本文引用的文献

1
Thrombin Activity and Thrombin Receptor in Rat Glioblastoma Model: Possible Markers and Targets for Intervention?
J Mol Neurosci. 2015 Jul;56(3):644-51. doi: 10.1007/s12031-015-0512-y. Epub 2015 Feb 19.
2
Brain neoplasms and coagulation-lessons from heterogeneity.
Rambam Maimonides Med J. 2014 Oct 29;5(4):e0030. doi: 10.5041/RMMJ.10164. eCollection 2014 Oct.
3
Microparticles: new light shed on the understanding of venous thromboembolism.
Acta Pharmacol Sin. 2014 Sep;35(9):1103-10. doi: 10.1038/aps.2014.73. Epub 2014 Aug 25.
4
5
Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):E3234-42. doi: 10.1073/pnas.1410041111. Epub 2014 Jun 17.
6
Oncogenes and the coagulation system--forces that modulate dormant and aggressive states in cancer.
Thromb Res. 2014 May;133 Suppl 2:S1-9. doi: 10.1016/S0049-3848(14)50001-1.
7
Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis.
J Biomed Sci. 2014 Mar 26;21(1):25. doi: 10.1186/1423-0127-21-25.
9
Intercellular transfer of tissue factor via the uptake of tumor-derived microvesicles.
Thromb Res. 2013 Oct;132(4):450-6. doi: 10.1016/j.thromres.2013.07.026. Epub 2013 Aug 3.
10
Activation of blood coagulation in cancer: implications for tumour progression.
Biosci Rep. 2013 Sep 4;33(5):e00064. doi: 10.1042/BSR20130057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验