Park Hyun Bong, Perez Corey E, Perry Elena Kim, Crawford Jason M
Department of Chemistry, Yale University, New Haven, CT 06520, USA.
Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
Molecules. 2016 Jun 24;21(7):824. doi: 10.3390/molecules21070824.
The amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a "cryptic" amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins. X. bovienii participates in a multi-lateral symbiosis where it is pathogenic to insects and mutualistic to its Steinernema nematode host. Waxmoth larvae are common prey of the X. bovienii-Steinernema pair. Employing a medium designed to mimic the amino acid content of the waxmoth circulatory fluid led to the detection and characterization of amicoumacins in X. bovienii. The chemical structures of the amicoumacins were supported by 2D-NMR, HR-ESI-QTOF-MS, tandem MS, and polarimeter spectral data. A comparative gene cluster analysis of the identified X. bovienii amicoumacin pathway to that of the Bacillus subtilis amicoumacin pathway and the structurally-related Xenorhabdus nematophila xenocoumacin pathway is presented. The X. bovienii pathway encodes an acetyltransferase not found in the other reported pathways, which leads to a series of N-acetyl-amicoumacins that lack antibacterial activity. N-acetylation of amicoumacin was validated through in vitro protein biochemical studies, and the impact of N-acylation on amicoumacin's mode of action was examined through ribosomal structural analyses.
氨甲香豆素属于一类二氢异香豆素天然产物,具有抗菌、抗真菌、抗癌和抗炎活性。氨甲香豆素是细菌非核糖体肽 - 聚酮杂合生物合成途径的前体药物激活产物,已从革兰氏阳性芽孢杆菌属和诺卡氏菌属中分离得到。在此,我们报道了在昆虫病原性革兰氏阴性细菌嗜线虫致病杆菌中激活了一条“隐秘的”氨甲香豆素途径,该菌株此前未知能产生氨甲香豆素。嗜线虫致病杆菌参与一种多边共生关系,它对昆虫具有致病性,而与其斯氏线虫宿主互利共生。蜡螟幼虫是嗜线虫致病杆菌 - 斯氏线虫组合的常见猎物。使用一种旨在模拟蜡螟循环液氨基酸含量的培养基,使得在嗜线虫致病杆菌中检测和鉴定出了氨甲香豆素。氨甲香豆素的化学结构得到了二维核磁共振、高分辨电喷雾电离 - 四极杆飞行时间质谱、串联质谱和旋光仪光谱数据的支持。本文对已鉴定的嗜线虫致病杆菌氨甲香豆素途径与枯草芽孢杆菌氨甲香豆素途径以及结构相关的嗜线虫致病杆菌嗜线虫异种香豆素途径进行了比较基因簇分析。嗜线虫致病杆菌途径编码一种在其他已报道途径中未发现的乙酰转移酶,这导致了一系列缺乏抗菌活性的N - 乙酰氨甲香豆素。通过体外蛋白质生化研究验证了氨甲香豆素的N - 乙酰化,并通过核糖体结构分析研究了N - 酰化对氨甲香豆素作用模式的影响。