MRC-PHE Centre for Environment & Health, Department of Epidemiology & Biostatistics, Faculty of Medicine, Imperial College London, W2 1PG, London, UK.
MRC-PHE Centre for Environment & Health, Department of Epidemiology & Biostatistics, Faculty of Medicine, Imperial College London, W2 1PG, London, UK.
Environ Pollut. 2016 Sep;216:746-754. doi: 10.1016/j.envpol.2016.06.042. Epub 2016 Jun 24.
Address-level estimates of exposure to road traffic noise for epidemiological studies are dependent on obtaining data on annual average daily traffic (AADT) flows that is both accurate and with good geographical coverage. National agencies often have reliable traffic count data for major roads, but for residential areas served by minor roads, especially at national scale, such information is often not available or incomplete. Here we present a method to predict AADT at the national scale for minor roads, using a routing algorithm within a geographical information system (GIS) to rank roads by importance based on simulated journeys through the road network. From a training set of known minor road AADT, routing importance is used to predict AADT on all UK minor roads in a regression model along with the road class, urban or rural location and AADT on the nearest major road. Validation with both independent traffic counts and noise measurements show that this method gives a considerable improvement in noise prediction capability when compared to models that do not give adequate consideration to minor road variability (Spearman's rho. increases from 0.46 to 0.72). This has significance for epidemiological cohort studies attempting to link noise exposure to adverse health outcomes.
用于流行病学研究的道路交通噪声暴露的地址级估计取决于获得准确且具有良好地理覆盖范围的年度平均日交通量 (AADT) 数据。国家机构通常拥有主要道路的可靠交通计数数据,但对于由次要道路服务的居民区,尤其是在国家范围内,此类信息通常不可用或不完整。在这里,我们提出了一种在全国范围内预测次要道路 AADT 的方法,该方法使用地理信息系统 (GIS) 中的路由算法根据通过路网模拟的旅行对道路进行重要性排序。从已知次要道路 AADT 的训练集中,根据路由重要性以及道路等级、城市或农村位置以及最近的主要道路上的 AADT,在回归模型中预测所有英国次要道路的 AADT。与独立交通计数和噪声测量的验证表明,与不充分考虑次要道路变异性的模型相比,这种方法在噪声预测能力方面有了显著提高(Spearman 的 rho 值从 0.46 增加到 0.72)。这对于试图将噪声暴露与不良健康结果联系起来的流行病学队列研究具有重要意义。