Suppr超能文献

通过原子探针层析术和扫描隧道谱对在位掺杂法制备的硅纳米线中的掺杂剂扩散和激活的关联研究。

Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

机构信息

Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States.

Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.

出版信息

Nano Lett. 2016 Jul 13;16(7):4490-500. doi: 10.1021/acs.nanolett.6b01693. Epub 2016 Jun 29.

Abstract

Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

摘要

掺杂剂在调节半导体材料的电学性质方面起着至关重要的作用,涵盖了从体材料到纳米尺度半导体、纳米线和量子点的范围。传统的掺杂方法应用于体材料,由于表面和随机波动的影响,需要对纳米尺度半导体进行额外的考虑,这些影响在纳米尺度水平上可能变得显著。单层掺杂是一种后生长掺杂纳米线的体外掺杂方法。在此,我们使用具有亚纳米空间分辨率和原子 ppm 检测极限的原子探针断层扫描(APT)技术,对具有精确控制的体外掺杂硅纳米线中的硼和磷分布进行了研究。观察到高度掺杂的磷外部区域和均匀掺杂的硼内部区域,这与基于体硅的标准预测不同。这些现象分别由磷的快速界面扩散和硼的增强体扩散来解释。APT 结果与扫描隧道光谱数据进行了比较,后者提供了有关电活性掺杂剂的信息。总体而言,通过比较这两种方法获得的信息,可以评估不同掺杂剂类型在纳米线氧化物、界面和芯区的扩散系数。综合数据集允许我们评估掺杂剂在纳米线不同区域的电激活和补偿情况,并了解导致体外掺杂过程中在纳米线中形成尖锐的 p-i-n 结的细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验