Suppr超能文献

通过嵌段共聚物导向自组装制备大规模平行硅纳米线阵列。

Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.

机构信息

Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.

出版信息

Nanoscale. 2012 May 21;4(10):3228-36. doi: 10.1039/c2nr00018k. Epub 2012 Apr 5.

Abstract

Extending the resolution and spatial proximity of lithographic patterning below critical dimensions of 20 nm remains a key challenge with very-large-scale integration, especially if the persistent scaling of silicon electronic devices is sustained. One approach, which relies upon the directed self-assembly of block copolymers by chemical-epitaxy, is capable of achieving high density 1 : 1 patterning with critical dimensions approaching 5 nm. Herein, we outline an integration-favourable strategy for fabricating high areal density arrays of aligned silicon nanowires by directed self-assembly of a PS-b-PMMA block copolymer nanopatterns with a L(0) (pitch) of 42 nm, on chemically pre-patterned surfaces. Parallel arrays (5 × 10(6) wires per cm) of uni-directional and isolated silicon nanowires on insulator substrates with critical dimension ranging from 15 to 19 nm were fabricated by using precision plasma etch processes; with each stage monitored by electron microscopy. This step-by-step approach provides detailed information on interfacial oxide formation at the device silicon layer, the polystyrene profile during plasma etching, final critical dimension uniformity and line edge roughness variation nanowire during processing. The resulting silicon-nanowire array devices exhibit Schottky-type behaviour and a clear field-effect. The measured values for resistivity and specific contact resistance were ((2.6 ± 1.2) × 10(5)Ωcm) and ((240 ± 80) Ωcm(2)) respectively. These values are typical for intrinsic (un-doped) silicon when contacted by high work function metal albeit counterintuitive as the resistivity of the starting wafer (∼10 Ωcm) is 4 orders of magnitude lower. In essence, the nanowires are so small and consist of so few atoms, that statistically, at the original doping level each nanowire contains less than a single dopant atom and consequently exhibits the electrical behaviour of the un-doped host material. Moreover this indicates that the processing successfully avoided unintentional doping. Therefore our approach permits tuning of the device steps to contact the nanowires functionality through careful selection of the initial bulk starting material and/or by means of post processing steps e.g. thermal annealing of metal contacts to produce high performance devices. We envision that such a controllable process, combined with the precision patterning of the aligned block copolymer nanopatterns, could prolong the scaling of nanoelectronics and potentially enable the fabrication of dense, parallel arrays of multi-gate field effect transistors.

摘要

将光刻图案的分辨率和空间接近度扩展到 20nm 以下的关键尺寸仍然是超大规模集成电路面临的一个关键挑战,特别是如果持续推进硅电子器件的缩小。一种方法是依靠化学外延引导的嵌段共聚物的定向自组装,能够以接近 5nm 的关键尺寸实现高密度 1:1 图案化。在此,我们概述了一种有利于集成的策略,通过在化学预图案化的表面上定向自组装 PS-b-PMMA 嵌段共聚物纳米图案,来制造具有高面积密度的排列硅纳米线阵列。使用精密等离子体刻蚀工艺制造了具有 15nm 至 19nm 临界尺寸的、在绝缘体衬底上具有单方向和隔离的硅纳米线的平行阵列(每平方厘米 5×10^6 根);每个阶段都通过电子显微镜进行监测。这种逐步的方法提供了有关器件硅层界面氧化层形成、等离子体刻蚀过程中聚苯乙烯轮廓、最终临界尺寸均匀性和线边缘粗糙度变化的详细信息。在加工过程中纳米线。所得的硅纳米线阵列器件表现出肖特基型行为和明显的场效应。测量得到的电阻率和特定接触电阻值分别为(2.6±1.2)×10^5Ωcm 和(240±80)Ωcm^2。这些值对于用高功函数金属接触的本征(未掺杂)硅是典型的,尽管与原始晶片的电阻率(约 10Ωcm)相比是反直觉的,因为原始晶片的电阻率低 4 个数量级。本质上,纳米线如此之小,由如此少的原子组成,以至于从统计学上讲,在原始掺杂水平下,每个纳米线包含的掺杂原子少于一个,因此表现出未掺杂主体材料的电行为。此外,这表明处理成功地避免了非故意掺杂。因此,我们的方法可以通过仔细选择初始块状起始材料和/或通过后处理步骤(例如金属接触的热退火)来调整器件步骤以接触纳米线功能,从而制造出高性能器件。我们设想,这种可控的工艺与对齐的嵌段共聚物纳米图案的精密图案化相结合,可以延长纳米电子学的缩放,并有可能实现密集、平行的多栅场效应晶体管阵列的制造。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验