Suppr超能文献

In-vitro stimulation of the rat epitrochlearis muscle. I. Contractile activity per se affects myofibrillar protein degradation and amino acid metabolism.

作者信息

Nie Z T, Lisjö S, Karlson E, Goertz G, Henriksson J

机构信息

Department of Physiology III Karolinska Institute, Stockholm, Sweden.

出版信息

Acta Physiol Scand. 1989 Apr;135(4):513-21. doi: 10.1111/j.1748-1716.1989.tb08610.x.

Abstract

The influence of contractile activity on protein degradation and amino acid metabolism in skeletal muscle was investigated by utilizing an in-vitro electrical stimulation model with the rat epitrochlearis muscle preparation. Graded decreases in contraction force and in the muscle content of ATP and PCr, and increases in lactate were recorded with different rates of stimulation (1 h) and with both isometric twitches and tetanic contractions. 3-Methylhistidine and phenylalanine were chosen as indicators of myofibrillar and total protein degradation, respectively. The release of 3-methylhistidine was significantly stimulated by contractile activity, but a significant increase in the total amount of this amino acid (released amount + tissue content) occurred only at the most intense contraction rates. The release rate, tissue content and total amount of phenylalanine were not influenced by the contractions. Glutamate formation was generally inhibited, but its release was increased. Alanine synthesis was increased in moderately and intensely stimulated muscles. Glutamine and glycine were not influenced by the contractions, however. Inhibition of protein synthesis did not significantly influence protein degradation or amino acid release. The data suggest that in the absence of anabolic factors in the medium, myofibrillar protein degradation is increased in heavily activated muscle. This takes place without total protein breakdown being affected.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验