Suppr超能文献

在鸟喙(剪嘴鸥属)中发现用于降低流体阻力的棱纹。

Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

作者信息

Martin Samuel, Bhushan Bharat

机构信息

Nanoprobe Laboratory for Bio and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA

Nanoprobe Laboratory for Bio and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0134.

Abstract

Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

摘要

在快速游动的鲨鱼鳞片上发现的棱纹结构,比如灰鲭鲨身上的那些,已被证明能减少流体阻力。在之前的实验和建模研究中,棱纹已被证明通过提升湍流中形成的涡流来减少阻力,从而降低整体剪切应力。剪嘴鸥(剪嘴鸥属)是唯一一种通过将喙浸入水中并在水面上方飞行来在空中捕鱼觅食的鸟类。由于它们需要迅速捕捉猎物,减少喙上的阻力是很有优势的。首次对剪嘴鸥喙上发现的棱纹结构进行了实验和计算研究,以探究其低流体阻力特性。在这项研究中,通过在封闭通道的湍流中测量压降,对剪嘴鸥的复制品进行了减阻研究。比较了黑色和黄色剪嘴鸥喙在两种配置下以及灰鲭鲨皮肤的压降测量结果。此外,还对两种剪嘴鸥喙的配置进行了建模,以比较阻力特性和涡流结构。对结果进行了讨论,并提出了一个概念模型来解释剪嘴鸥可能的减阻机制。本文是主题为“绿色科学中的生物启发式分层结构表面”特刊的一部分。

相似文献

1
Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0134.
2
Modeling and optimization of shark-inspired riblet geometries for low drag applications.
J Colloid Interface Sci. 2016 Jul 15;474:206-15. doi: 10.1016/j.jcis.2016.04.019. Epub 2016 Apr 16.
3
Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
Philos Trans A Math Phys Eng Sci. 2010 Oct 28;368(1929):4775-806. doi: 10.1098/rsta.2010.0201.
4
Shark skin inspired low-drag microstructured surfaces in closed channel flow.
J Colloid Interface Sci. 2013 Mar 1;393:384-96. doi: 10.1016/j.jcis.2012.10.061. Epub 2012 Nov 28.
5
Turbulence model choice for the calculation of drag forces when using the CFD method.
J Biomech. 2010 Feb 10;43(3):405-11. doi: 10.1016/j.jbiomech.2009.10.010. Epub 2009 Nov 3.
7
8
Relationship Between Skin Scales and the Main Flow Field Around the Shortfin Mako Shark .
Front Bioeng Biotechnol. 2022 Apr 25;10:742437. doi: 10.3389/fbioe.2022.742437. eCollection 2022.
9
Fluid drag reduction by penguin-mimetic laser-ablated riblets with yaw angles.
Bioinspir Biomim. 2022 Aug 18;17(5). doi: 10.1088/1748-3190/ac7f71.
10
Repeated evolution of drag reduction at the air-water interface in diving kingfishers.
J R Soc Interface. 2019 May 31;16(154):20190125. doi: 10.1098/rsif.2019.0125.

引用本文的文献

1
Wind gradient exploitation during foraging flights by black skimmers (Rynchops niger).
J Exp Biol. 2024 Aug 15;227(16). doi: 10.1242/jeb.246855. Epub 2024 Aug 22.
2
Repeated evolution of drag reduction at the air-water interface in diving kingfishers.
J R Soc Interface. 2019 May 31;16(154):20190125. doi: 10.1098/rsif.2019.0125.

本文引用的文献

1
Modeling and optimization of shark-inspired riblet geometries for low drag applications.
J Colloid Interface Sci. 2016 Jul 15;474:206-15. doi: 10.1016/j.jcis.2016.04.019. Epub 2016 Apr 16.
2
Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing.
Bioinspir Biomim. 2015 Nov 18;10(6):066010. doi: 10.1088/1748-3190/10/6/066010.
4
Movable shark scales act as a passive dynamic micro-roughness to control flow separation.
Bioinspir Biomim. 2014 Sep;9(3):036017. doi: 10.1088/1748-3182/9/3/036017. Epub 2014 Jul 21.
5
Shark skin inspired low-drag microstructured surfaces in closed channel flow.
J Colloid Interface Sci. 2013 Mar 1;393:384-96. doi: 10.1016/j.jcis.2012.10.061. Epub 2012 Nov 28.
6
The hydrodynamic function of shark skin and two biomimetic applications.
J Exp Biol. 2012 Mar 1;215(Pt 5):785-95. doi: 10.1242/jeb.063040.
7
Biomimetic structures for fluid drag reduction in laminar and turbulent flows.
J Phys Condens Matter. 2010 Jan 27;22(3):035104. doi: 10.1088/0953-8984/22/3/035104. Epub 2009 Dec 21.
8
Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
Philos Trans A Math Phys Eng Sci. 2010 Oct 28;368(1929):4775-806. doi: 10.1098/rsta.2010.0201.
9
Biomimetics: lessons from nature--an overview.
Philos Trans A Math Phys Eng Sci. 2009 Apr 28;367(1893):1445-86. doi: 10.1098/rsta.2009.0011.
10
Mechanics of gliding in birds with special reference to the influence of the ground effect.
J Biomech. 1983;16(8):649-54. doi: 10.1016/0021-9290(83)90115-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验