Suppr超能文献

生物学中的超疏水分级结构表面:进化、结构原理及仿生应用。

Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

作者信息

Barthlott W, Mail M, Neinhuis C

机构信息

Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, Bonn 53115, Germany

Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, Bonn 53115, Germany Institute of Crop Science and Resource Conservation (INRES)-Horticultural Science, University of Bonn, Auf dem Hügel 6, Bonn 53121, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0191.

Abstract

A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

摘要

本文基于对近20000个不同物种的扫描电子显微镜检查及现有文献,全面综述了植物、动物和其他生物体中超疏水表面的构建原理及出现情况。文中描述了自清洁(荷叶效应)、减阻(槐叶萍效应)和引入新功能(空气层作为传感系统)等特性,并讨论了仿生应用:自清洁已得到应用,减阻变得越来越重要,还引入了新型空气保留网格技术。令人惊讶的是,非生物表面不存在持久超疏水性的证据(技术材料除外)。系统发育树表明,超疏水性是约4.5亿年前征服陆地的结果,可能是陆地生命进化中的一项关键创新。现存约1000万个物种展现出材料和结构的惊人多样性,其中许多是通过自组装形成的,且仅基于有限数量的分子。简短的历史回顾表明,仿生学(如今常称为生物仿生学)可追溯到100多年前。统计数据表明,对仿生表面的兴趣仍要年轻得多。超疏水性直到1997年荷叶的极端超疏水性被公布后才引起科学家的关注。遗憾的是,仿生物产品在市场营销中发挥着越来越大的作用。本文是主题为“用于绿色科学的生物启发分层结构表面”的特刊的一部分。

相似文献

1
Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.
Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0191.
2
Plant Surfaces: Structures and Functions for Biomimetic Innovations.
Nanomicro Lett. 2017;9(2):23. doi: 10.1007/s40820-016-0125-1. Epub 2017 Jan 4.
3
Hierarchically sculptured plant surfaces and superhydrophobicity.
Langmuir. 2009 Dec 15;25(24):14116-20. doi: 10.1021/la9017322.
4
Air retaining grids-a novel technology to maintain stable air layers under water for drag reduction.
Philos Trans A Math Phys Eng Sci. 2019 Jul 29;377(2150):20190126. doi: 10.1098/rsta.2019.0126. Epub 2019 Jun 10.
5
Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
Philos Trans A Math Phys Eng Sci. 2009 Apr 28;367(1893):1487-509. doi: 10.1098/rsta.2009.0022.
6
Superhydrophobic surfaces: from natural to biomimetic to functional.
J Colloid Interface Sci. 2011 Jan 15;353(2):335-55. doi: 10.1016/j.jcis.2010.08.047. Epub 2010 Aug 24.
7
The dream of staying clean: Lotus and biomimetic surfaces.
Bioinspir Biomim. 2007 Dec;2(4):S126-34. doi: 10.1088/1748-3182/2/4/S02. Epub 2007 Oct 16.
8
Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
Philos Trans A Math Phys Eng Sci. 2009 May 13;367(1894):1631-72. doi: 10.1098/rsta.2009.0014.
9
Superrepellency of underwater hierarchical structures on leaf.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2282-2287. doi: 10.1073/pnas.1900015117. Epub 2020 Jan 21.
10
Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces: a novel technique for oil-water separation.
Philos Trans A Math Phys Eng Sci. 2020 Mar 20;378(2167):20190447. doi: 10.1098/rsta.2019.0447. Epub 2020 Feb 3.

引用本文的文献

1
Non-Wettable Galvanic Coatings for Metal Protection: Insights from Nature-Inspired Solutions.
Materials (Basel). 2025 Jun 18;18(12):2890. doi: 10.3390/ma18122890.
2
Transition Processes in Technological Systems: Inspiration from Processes in Biological Evolution.
Biomimetics (Basel). 2025 Jun 16;10(6):406. doi: 10.3390/biomimetics10060406.
3
Superhydrophobic Fatty Acid-Based Spray Coatings with Dual-Mode Antifungal Activity.
ACS Appl Bio Mater. 2025 Jul 21;8(7):5970-5983. doi: 10.1021/acsabm.5c00596. Epub 2025 Jun 9.
5
Germination Development of Powdery Mildew on Natural and Artificial Wheat Leaf Surfaces: A Study to Investigate Plant Wax Signals.
Small Sci. 2023 Jan 31;3(3):2200092. doi: 10.1002/smsc.202200092. eCollection 2023 Mar.
6
Investigating the Nanostructure Design Mechanism Behind the Hydrophobicity of the Biomimetic Surface.
ACS Appl Mater Interfaces. 2025 Apr 16;17(15):23394-23404. doi: 10.1021/acsami.5c01743. Epub 2025 Apr 1.
8
The Future of Bioinspired Innovation: Exploring the Potential of Nanobiomimetics.
Nano Lett. 2024 Sep 25;24(38):11765-11767. doi: 10.1021/acs.nanolett.4c02816. Epub 2024 Sep 12.
10
Advanced Self-Cleaning Surfaces.
Materials (Basel). 2024 Jan 23;17(3):537. doi: 10.3390/ma17030537.

本文引用的文献

1
Atomic force microscopy study of isolated ivy leaf cuticles observed directly and after embedding in Epon®.
New Phytol. 1996 Dec;134(4):571-577. doi: 10.1111/j.1469-8137.1996.tb04922.x.
2
Structure-function relationships of the plant cuticle and cuticular waxes - a smart material?
Funct Plant Biol. 2006 Oct;33(10):893-910. doi: 10.1071/FP06139.
3
Directional adhesion of superhydrophobic butterfly wings.
Soft Matter. 2007 Jan 23;3(2):178-182. doi: 10.1039/b612667g.
5
Accelerated modern human-induced species losses: Entering the sixth mass extinction.
Sci Adv. 2015 Jun 19;1(5):e1400253. doi: 10.1126/sciadv.1400253. eCollection 2015 Jun.
6
3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.
ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25560-7. doi: 10.1021/acsami.5b07722. Epub 2015 Nov 16.
7
Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei.
J Exp Biol. 2015 Nov;218(Pt 21):3478-86. doi: 10.1242/jeb.125047.
8
The springtail cuticle as a blueprint for omniphobic surfaces.
Chem Soc Rev. 2016 Jan 21;45(2):323-41. doi: 10.1039/c5cs00438a. Epub 2015 Aug 4.
9
Learning from nature's best.
Nature. 2015 Mar 26;519(7544):S2-3. doi: 10.1038/519S2a.
10
The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness.
Beilstein J Nanotechnol. 2015 Jan 2;6:11-8. doi: 10.3762/bjnano.6.2. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验