Suppr超能文献

毛细黏附技术:一种用于测定液体黏附力和样品硬度的通用方法。

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness.

机构信息

Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.

Zoological Institute, University of Kiel, 24118 Kiel, Germany.

出版信息

Beilstein J Nanotechnol. 2015 Jan 2;6:11-8. doi: 10.3762/bjnano.6.2. eCollection 2015.

Abstract

We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young's modulus) for individual hairs of 3.0 × 10(5) N/cm(2), which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

摘要

我们报告了一种新颖实用的技术,可同时协同确定小结构或结构单元(例如,单个纤维、毛发、微机械部件或微传感器)与液体之间的粘附力及其弹性特性。该方法涉及通过结构触及液体表面来创建和发展液体弯月面,随后在去除结构时破坏该液体弯月面。在弯月面突然断开之前评估弯月面的形状,可以定量确定液体粘附力。同时,通过测量和评估被研究结构的变形,可以确定其弹性特性。该方法的灵敏度非常高,实际上受到捕获该过程的相机分辨率的限制。测量到的粘附力低至 10 µN,弹性常数高达 2 N/m。该方法的三个典型应用示例如下:(1)测定浮萍 Salvinia molesta 的单个毛发(触须)的水粘附力和弹性。(2)对有人工功能表面涂层的和无人工功能表面涂层的人类头发进行了研究(这是头发化妆品领域的一个重要课题)。该方法还测量了单个毛发的弹性模量(杨氏模量)为 3.0 × 10(5) N/cm(2),这在人类头发的典型范围内。(3)最后,通过检查经过校准的原子力显微镜悬臂来证明毛细粘附技术的准确性和有效性,重现了使用其他方法校准的弹性常数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82ed/4311649/7b04a8e79e3d/Beilstein_J_Nanotechnol-06-11-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验