Suppr超能文献

原发性骨髓纤维化中的骨髓纤维化:致病机制及转化生长因子-β的作用

Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β.

作者信息

Agarwal Archana, Morrone Kerry, Bartenstein Matthias, Zhao Zhizhuang Joe, Verma Amit, Goel Swati

机构信息

1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

出版信息

Stem Cell Investig. 2016 Feb 26;3:5. doi: 10.3978/j.issn.2306-9759.2016.02.03. eCollection 2016.

Abstract

Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-β) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-β in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-β mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-β pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF.

摘要

原发性骨髓纤维化(PMF)是一种预后不良的费城染色体阴性骨髓增殖性肿瘤(MPN),与骨髓纤维化和髓外造血有关。尽管Janus激酶2(JAK2)、血小板生成素受体(MPL)和钙网蛋白(CALR)突变的发现为MPN复杂的发病机制带来了新的见解,但纤维化的病因仍未完全明确。此外,由于JAK2抑制剂不能使纤维化逆转,因此需要进一步了解纤维化过程的生物学机制,以发现未来的治疗方法。转化生长因子β(TGF-β)被认为是骨髓纤维化发病机制中的一种重要细胞因子。已经建立了各种小鼠模型,并确定了TGF-β在纤维化发病机制中的作用。了解导致TGF-β对骨髓微环境产生影响的分子改变,可能会发现针对骨髓纤维化的新治疗靶点。联合其他疗法抑制TGF-β信号通路可能对逆转PMF中的骨髓纤维化有用。

相似文献

1
Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β.
Stem Cell Investig. 2016 Feb 26;3:5. doi: 10.3978/j.issn.2306-9759.2016.02.03. eCollection 2016.
2
Efficacy of ALK5 inhibition in myelofibrosis.
JCI Insight. 2017 Apr 6;2(7):e90932. doi: 10.1172/jci.insight.90932.
3
Recent advances in understanding myelofibrosis and essential thrombocythemia.
F1000Res. 2016 Apr 19;5. doi: 10.12688/f1000research.8081.1. eCollection 2016.
5
A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis.
Blood. 2005 May 1;105(9):3493-501. doi: 10.1182/blood-2004-04-1320. Epub 2005 Jan 21.
6
Somatic mutations of calreticulin in myeloproliferative neoplasms.
N Engl J Med. 2013 Dec 19;369(25):2379-90. doi: 10.1056/NEJMoa1311347. Epub 2013 Dec 10.
7
Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review.
Med Princ Pract. 2016;25(6):501-509. doi: 10.1159/000450956. Epub 2016 Sep 21.
9
Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice.
Blood. 2002 Nov 15;100(10):3495-503. doi: 10.1182/blood-2002-04-1133. Epub 2002 Jul 5.
10
JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis.
Exp Hematol. 2009 Oct;37(10):1186-1193.e7. doi: 10.1016/j.exphem.2009.07.005. Epub 2009 Jul 17.

引用本文的文献

3
Potential application of the bulk RNA sequencing in routine MPN clinics.
BMC Cancer. 2025 Apr 22;25(1):746. doi: 10.1186/s12885-025-13947-x.
4
Investigational drugs in early phase trials for myelofibrosis.
Expert Opin Investig Drugs. 2024 Dec;33(12):1231-1244. doi: 10.1080/13543784.2024.2434696. Epub 2024 Nov 27.
6
Fibrosis and bone marrow: understanding causation and pathobiology.
J Transl Med. 2023 Oct 9;21(1):703. doi: 10.1186/s12967-023-04393-z.
7
Brucellosis complicated by myelofibrosis: report of five cases and review of literature.
Int J Clin Exp Pathol. 2023 Jul 15;16(7):164-171. eCollection 2023.
9
Whole bone subcutaneous transplantation as a strategy to study precisely the bone marrow niche.
Stem Cell Rev Rep. 2023 May;19(4):906-927. doi: 10.1007/s12015-022-10496-9. Epub 2022 Dec 31.
10
Calreticulin in renal fibrosis: A short review.
J Cell Mol Med. 2022 Dec;26(24):5949-5954. doi: 10.1111/jcmm.17627. Epub 2022 Nov 28.

本文引用的文献

1
Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition.
Nat Med. 2015 Dec;21(12):1473-80. doi: 10.1038/nm.3995. Epub 2015 Nov 16.
3
CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia.
J Hematol Oncol. 2014 Oct 15;7:77. doi: 10.1186/s13045-014-0077-1.
4
Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies.
J Hematol Oncol. 2014 Mar 5;7:18. doi: 10.1186/1756-8722-7-18.
5
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
N Engl J Med. 2013 Dec 19;369(25):2391-2405. doi: 10.1056/NEJMoa1312542. Epub 2013 Dec 10.
6
Another piece of the myeloproliferative neoplasms puzzle.
N Engl J Med. 2013 Dec 19;369(25):2451-2. doi: 10.1056/NEJMe1313643. Epub 2013 Dec 10.
7
Somatic mutations of calreticulin in myeloproliferative neoplasms.
N Engl J Med. 2013 Dec 19;369(25):2379-90. doi: 10.1056/NEJMoa1311347. Epub 2013 Dec 10.
8
Genetic basis of MPN: Beyond JAK2-V617F.
Curr Hematol Malig Rep. 2013 Dec;8(4):299-306. doi: 10.1007/s11899-013-0184-z.
9
Anti-transforming growth factor-β therapy in patients with myelofibrosis.
Leuk Lymphoma. 2014 Feb;55(2):450-2. doi: 10.3109/10428194.2013.805329. Epub 2013 Jun 24.
10
Myelofibrosis: an update on current pharmacotherapy and future directions.
Expert Opin Pharmacother. 2013 May;14(7):873-84. doi: 10.1517/14656566.2013.783019. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验