Picoli Caroline C, Martins Patrícia Rocha, Wong Xiao Lin Casey, Righi Thamires, Guimarães Pedro P G, Pinto Mauro C X, Amorim Jaime H, Azevedo Vasco A C, Pereira Silma Regina, Kanashiro Alexandre, Cruz Fabio Cardoso, Resende Rodrigo R, Mintz Akiva, Frenette Paul S, Birbrair Alexander
Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
Stem Cell Rev Rep. 2023 May;19(4):906-927. doi: 10.1007/s12015-022-10496-9. Epub 2022 Dec 31.
Hematopoietic stem cells are maintained in a specialized microenvironment, known as the 'niche', within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method - 'whole bone subcutaneous transplantation'- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.
造血干细胞维持于骨髓内一个被称为“龛位”的特殊微环境中。了解骨髓龛位中的细胞和分子成分对造血干细胞维持的作用,对于治疗应用的成功至关重要。到目前为止,骨髓龛位中关键机制的作用已在转基因动物中进行了探索,在这些动物中,基因修饰被全身普遍引入。缺乏专门用于探索骨髓内基因改变的精确工具,阻碍了我们确定所观察到的结果是否源于其他器官的混杂效应。在此,我们开发了一种新方法——“全骨皮下移植”——来精确研究转基因动物中的骨髓龛位。通过对CD45.1(供体)与CD45.2(受体)造血干细胞进行免疫标记,我们证明移植后宿主动物的造血干细胞定殖于皮下移植的股骨,而供体的造血干细胞消失。引人注目的是,这些皮下移植股骨的骨髓龛位仍来自供体小鼠,这使我们能够使用该模型专门研究骨髓龛位的细胞。我们还表明,特异性地对供体股骨中的血管周围细胞进行基因消融,会减少这些骨骼中造血干细胞的数量。这支持将该策略作为一种模型,结合基因工具,来评估骨髓龛位特异性修饰如何影响未修饰的造血干细胞。因此,这种方法可用于仅在骨髓内对特定细胞类型进行体内基因操作。全骨皮下移植与啮齿类转基因模型的结合,将有助于更精确、复杂和全面地理解造血干细胞骨髓龛位研究中存在的问题。