Suppr超能文献

基于睡眠呼吸障碍患者多导睡眠图参数评估心血管疾病

Estimation of cardiovascular disease from polysomnographic parameters in sleep-disordered breathing.

作者信息

Turhan Murat, Bostanci Asli, Bozkurt Selen

机构信息

Department of Otolaryngology, Head and Neck Surgery, Akdeniz University School of Medicine, Dumlupinar Boulevard, H-Blok, Konyaalti, 07058, Antalya, Turkey.

Department of Biostatistics and Medical Informatics, Akdeniz University School of Medicine, Antalya, Turkey.

出版信息

Eur Arch Otorhinolaryngol. 2016 Dec;273(12):4585-4593. doi: 10.1007/s00405-016-4176-1. Epub 2016 Jun 30.

Abstract

We aimed to illustrate the causal relationships between cardiovascular diseases (CVDs) and various polysomnographic variables, and to develop a CVD estimation model from these variables in a population referred for assessment of possible sleep-disordered breathing (SDB). Clinical and polysomnographic data of 1162 consecutive patients with suspected SDB whose comorbidity status was known, were reviewed, retrospectively. Variable selection was performed in two steps using univariate analysis and tenfold cross validation information gain analysis. The resulting set of variables with an average merit value (m) of >0.005 was considered to be causal factors contributing to the CVDs, and used in Bayesian network models for providing estimations. Of the 1162 patients, 234 had CVDs (20.1 %). In total, 28 parameters were evaluated for variable selection. Of those, 19 were found to be associated with CVDs. Age was the most effective attribute in estimating CVD (m = 0.051), followed by total sleep time with oxygen saturation <90 % (m = 0.021). Some other important variables were apnea-hypopnea index during non-rapid eye movement (m = 0.018), lowest oxygen saturation (m = 0.018), body mass index (m = 0.016), total apnea duration (m = 0.014), mean apnea duration (m = 0.014), longest apnea duration (m = 0.013), and severity of SDB (m = 0.012). The modeling process resulted in a final model, with 76.9 % sensitivity, 96.2 % specificity, and 92.6 % negative predictive value, consisting of all selected variables. The study provides evidence that the estimation of CVDs from polysomnographic parameters is possible with high predictive performance using Bayesian network analysis.

摘要

我们旨在阐明心血管疾病(CVD)与各种多导睡眠图变量之间的因果关系,并根据这些变量开发一个CVD估计模型,用于对疑似睡眠呼吸障碍(SDB)的人群进行评估。回顾性分析了1162例连续的疑似SDB患者的临床和多导睡眠图数据,这些患者的合并症状态已知。使用单变量分析和十折交叉验证信息增益分析分两步进行变量选择。平均价值(m)>0.005的最终变量集被认为是导致CVD的因果因素,并用于贝叶斯网络模型以提供估计。在1162例患者中,234例患有CVD(20.1%)。总共评估了28个参数用于变量选择。其中,19个被发现与CVD相关。年龄是估计CVD最有效的属性(m = 0.051),其次是氧饱和度<90%的总睡眠时间(m = 0.021)。其他一些重要变量包括非快速眼动期呼吸暂停低通气指数(m = 0.018)、最低氧饱和度(m = 0.018)、体重指数(m = 0.016)、总呼吸暂停持续时间(m = 0.014)、平均呼吸暂停持续时间(m = 0.014)、最长呼吸暂停持续时间(m = 0.013)和SDB严重程度(m = 0.012)。建模过程产生了一个最终模型,其灵敏度为76.9%,特异性为96.2%,阴性预测值为92.6%,由所有选定变量组成。该研究提供了证据,表明使用贝叶斯网络分析可以从多导睡眠图参数中对CVD进行具有高预测性能的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验