Department of Mechanical and Industrial Engineering, and Institute of Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8 Canada.
Lab Chip. 2016 Aug 7;16(15):2785-90. doi: 10.1039/c6lc00619a. Epub 2016 Jul 1.
Optimizing bioproduct generation from microalgae is complicated by the myriad of coupled parameters affecting photosynthetic productivity. Quantifying the effect of multiple coupled parameters in full-factorial fashion requires a prohibitively high number of experiments. We present a simple hydrogel-based platform for the rapid, full-factorial mapping of light and nutrient availability on the growth and lipid accumulation of microalgae. We accomplish this without microfabrication using thin sheets of cell-laden hydrogels. By immobilizing the algae in a hydrogel matrix we are able to take full advantage of the continuous spatial chemical gradient produced by a diffusion-based gradient generator while eliminating the need for chambers. We map the effect of light intensities between 0 μmol m(-2) s(-1) and 130 μmol m(-2) s(-1) (∼28 W m(-2)) coupled with ammonium concentrations between 0 mM and 7 mM on Chlamydomonas reinhardtii. Our data set, verified with bulk experiments, clarifies the role of ammonium availability on the photosynthetic productivity Chlamydomonas reinhardtii, demonstrating the dependence of ammonium inhibition on light intensity. Specifically, a sharp optimal growth peak emerges at approximately 2 mM only for light intensities between 80 and 100 μmol m(-2) s(-1)- suggesting that ammonium inhibition is insignificant at lower light intensities. We speculate that this phenomenon is due to the regulation of the high affinity ammonium transport system in Chlamydomonas reinhardtii as well as free ammonia toxicity. The complexity of this photosynthetic biological response highlights the importance of full-factorial data sets as enabled here.
优化微藻的生物产物生成受到影响光合作用生产力的众多耦合参数的影响。以完全因子的方式量化多个耦合参数的影响需要进行数量极多的实验。我们提出了一种基于水凝胶的简单平台,用于快速、全面地研究光照和营养可用性对微藻生长和脂质积累的影响。我们通过使用薄的细胞负载水凝胶片来实现这一点,而无需微制造。通过将藻类固定在水凝胶基质中,我们能够充分利用基于扩散的梯度发生器产生的连续空间化学梯度,同时消除对腔室的需求。我们绘制了光强在 0 μmol m(-2) s(-1) 到 130 μmol m(-2) s(-1)(约 28 W m(-2))之间与铵浓度在 0 mM 到 7 mM 之间对莱茵衣藻的影响。我们的数据集经过大量实验验证,阐明了铵可用性对莱茵衣藻光合作用生产力的作用,证明了铵抑制作用对光强的依赖性。具体来说,只有在 80 到 100 μmol m(-2) s(-1) 的光强之间,才会出现约 2 mM 的明显最佳生长峰值-表明在较低的光强下,铵抑制作用不明显。我们推测,这种现象是由于莱茵衣藻中高亲和力铵转运系统的调节以及游离氨毒性所致。这种光合作用生物反应的复杂性突出了这里所实现的全因子数据集的重要性。