Lee Jimmy W, Applebaum Scott L, Manahan Donal T
Department of Biological Sciences, University of Southern California, Los Angeles, California 90089.
Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
Biol Bull. 2016 Jun;230(3):175-87. doi: 10.1086/BBLv230n3p175.
The energy made available through catabolism of specific biochemical reserves is constant using standard thermodynamic conversion equivalents (e.g., 24.0 J mg protein(-1)). In contrast, measurements reported for the energy cost of synthesis of specific biochemical constituents are highly variable. In this study, we measured the metabolic cost of protein synthesis and determined whether this cost was influenced by genotype, phenotype, or environment. We focused on larval stages of the Pacific oyster Crassostrea gigas, a species that offers several experimental advantages: availability of genetically pedigreed lines, manipulation of ploidy, and tractability of larval forms for in vivo studies of physiological processes. The cost of protein synthesis was measured in larvae of C. gigas for 1) multiple genotypes, 2) phenotypes with different growth rates, and 3) different environmental temperatures. For all treatments, the cost of protein synthesis was within a narrow range--near the theoretical minimum--with a fixed cost (mean ± one standard error, n = 21) of 2.1 ± 0.2 J (mg protein synthesized)(-1) We conclude that there is no genetic variation in the metabolic cost of protein synthesis, thereby simplifying bioenergetic models. Protein synthesis is a major component of larval metabolism in C. gigas, accounting for more than half the metabolic rate in diploid (59%) and triploid larvae (54%). These results provide measurements of metabolic cost of protein synthesis in larvae of C. gigas, an indicator species for impacts of ocean change, and provide a quantitative basis for evaluating the cost of resilience.
利用标准热力学转换当量(例如,24.0焦每毫克蛋白质(-1)),通过特定生化储备的分解代谢所产生的可用能量是恒定的。相比之下,关于特定生化成分合成的能量成本的报告测量值变化很大。在本研究中,我们测量了蛋白质合成的代谢成本,并确定这种成本是否受基因型、表型或环境的影响。我们聚焦于太平洋牡蛎(Crassostrea gigas)的幼虫阶段,该物种具有几个实验优势:有遗传谱系的品系、可操控倍性以及幼虫形态便于进行生理过程的体内研究。我们在太平洋牡蛎幼虫中测量了蛋白质合成的成本,针对1)多种基因型,2)具有不同生长速率的表型,以及3)不同的环境温度。对于所有处理,蛋白质合成的成本都在一个狭窄范围内——接近理论最小值——固定成本(平均值±一个标准误差,n = 21)为2.1±0.2焦每(毫克合成蛋白质)(-1)。我们得出结论,蛋白质合成的代谢成本不存在遗传变异,从而简化了生物能量模型。蛋白质合成是太平洋牡蛎幼虫代谢的主要组成部分,在二倍体幼虫(59%)和三倍体幼虫(54%)中占代谢率的一半以上。这些结果提供了太平洋牡蛎幼虫蛋白质合成代谢成本的测量值,太平洋牡蛎是海洋变化影响的指示物种,为评估恢复力成本提供了定量依据。