Suppr超能文献

粉末衍射:最小二乘法及其他

Powder Diffraction: Least-Squares and Beyond.

作者信息

David W I F

机构信息

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX, U.K.

出版信息

J Res Natl Inst Stand Technol. 2004 Feb 1;109(1):107-123. doi: 10.6028/jres.109.008. Print 2004 Jan-Feb.

Abstract

This paper addresses some of the underlying statistical assumptions and issues in the collection and refinement of powder diffraction data. While standard data collection and Rietveld analysis have been extremely successful in providing structural information on a vast range of materials, there is often uncertainty about the true accuracy of the derived structural parameters. In this paper, we discuss a number of topics concerning data collection and the statistics of data analysis. We present a simple new function, the cumulative chi-squared distribution, for assessing regions of misfit in a diffraction pattern and introduce a matrix which relates the impact of individual points in a powder diffraction pattern with improvements in the estimated standard deviation of refined parameters. From an experimental viewpoint, we emphasise the importance of not over-counting at low-angles and the routine use of a variable counting scheme for data collection. Data analysis issues are discussed within the framework of maximum likelihood, which incorporates the current least-squares strategies but also enables the impact of systematic uncertainties in both observed and calculated data to be reduced.

摘要

本文探讨了粉末衍射数据收集与精修过程中一些潜在的统计假设和问题。虽然标准的数据收集和Rietveld分析在提供大量材料的结构信息方面极为成功,但导出的结构参数的真正准确性往往存在不确定性。在本文中,我们讨论了一些与数据收集和数据分析统计相关的主题。我们提出了一个简单的新函数——累积卡方分布,用于评估衍射图谱中的失配区域,并引入了一个矩阵,该矩阵将粉末衍射图谱中各个点的影响与精修参数估计标准差的改进联系起来。从实验的角度来看,我们强调了在低角度时不过度计数的重要性以及在数据收集时常规使用可变计数方案的重要性。数据分析问题在最大似然框架内进行讨论,该框架纳入了当前的最小二乘法策略,同时还能减少观测数据和计算数据中系统不确定性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6601/4849621/c16168075d97/j91davf1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验