Suppr超能文献

纳米颗粒加宽X射线线轮廓的贝叶斯推断

Bayesian Inference of Nanoparticle-Broadened X-Ray Line Profiles.

作者信息

Armstrong Nicholas, Kalceff Walter, Cline James P, Bonevich John E

机构信息

University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia.

National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

出版信息

J Res Natl Inst Stand Technol. 2004 Feb 1;109(1):155-178. doi: 10.6028/jres.109.012. Print 2004 Jan-Feb.

Abstract

A single-step, self-contained method for determining the crystallite-size distribution and shape from experimental x-ray line profile data is presented. It is shown that the crystallite-size distribution can be determined without invoking a functional form for the size distribution, determining instead the size distribution with the least assumptions by applying the Bayesian/MaxEnt method. The Bayesian/MaxEnt method is tested using both simulated and experimental CeO2 data, the results comparing favourably with experimental CeO2 data from TEM measurements.

摘要

本文提出了一种从实验X射线线形轮廓数据中确定微晶尺寸分布和形状的单步、独立方法。结果表明,无需为尺寸分布引入函数形式,而是通过应用贝叶斯/最大熵方法以最少的假设来确定微晶尺寸分布。使用模拟的和实验的CeO₂数据对贝叶斯/最大熵方法进行了测试,结果与透射电子显微镜测量得到的CeO₂实验数据相比具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b80/4849618/931bcacf978a/j91armf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验