Suppr超能文献

理解创新引擎:通过深度学习实现自动化创造力与改进的随机优化

Understanding Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning.

作者信息

Nguyen A, Yosinski J, Clune J

机构信息

University of Wyoming

Cornell University & Geometric Intelligence

出版信息

Evol Comput. 2016 Fall;24(3):545-72. doi: 10.1162/EVCO_a_00189. Epub 2016 Jul 1.

Abstract

The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.

摘要

随机优化算法的致命弱点是陷入局部最优。新颖性搜索通过用对新颖行为的奖励取代性能目标,鼓励在所有有趣的方向上进行探索,从而缓解了这个问题。传统上,这种对新颖行为的奖励需要一个人工设计的行为距离函数。虽然新颖性搜索是一个重大的概念突破,并且在某些问题上优于传统的随机优化,但尚不清楚如何将其应用于具有挑战性的高维问题,在这些问题中指定一个有用的行为距离函数很困难。例如,在图像空间中,如何鼓励新颖性以产生鹰和英雄,而不是无尽的像素静态画面?在这里,我们提出了一种新算法——创新引擎,它基于新颖性搜索,用一个能够识别表型之间有趣差异的深度神经网络(DNN)取代人工设计的行为距离。关键的见解是,DNN可以在抽象层面识别表型之间的异同,其中新颖性意味着有趣的新颖性。例如,基于DNN的图像空间新颖性搜索不会在低层次像素空间中探索,而是产生一种压力来创造新型图像(例如教堂、清真寺、方尖碑等)。在这里,我们描述了创新引擎算法的长期愿景,这涉及许多有待解决的技术挑战。然后,我们实现了该算法的一个简化版本,使我们能够探索该算法的一些关键动机。我们在图像领域的初步结果表明,创新引擎最终可以在任何领域自动生成无尽的有趣解决方案流:例如,生产智能软件、机器人控制器、优化的物理组件和艺术作品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验