Kimchi-Schwartz M E, Martin L, Flurin E, Aron C, Kulkarni M, Tureci H E, Siddiqi I
Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley, California 94720, USA.
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2016 Jun 17;116(24):240503. doi: 10.1103/PhysRevLett.116.240503. Epub 2016 Jun 16.
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.
浴工程利用量子系统中与有损模式的耦合来产生非平凡稳态,是基于门和测量的量子科学的一种诱人替代方案。在此,我们展示了以对称选择的方式对两个超导transmon量子比特之间的纠缠进行耗散稳定。我们利用耗散环境的工程对称性来稳定目标贝尔态;我们进一步证明了由于宇称选择规则,对具有相反对称性的贝尔态的抑制。这种实现方式资源高效,实现了稳态保真度F = 0.70,并且可扩展到多个量子比特。