Salfi Joe, Mol Jan A, Culcer Dimitrie, Rogge Sven
School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia.
Centre for Quantum Computation and Communication Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia.
Phys Rev Lett. 2016 Jun 17;116(24):246801. doi: 10.1103/PhysRevLett.116.246801. Epub 2016 Jun 14.
High fidelity entanglement of an on-chip array of spin qubits poses many challenges. Spin-orbit coupling (SOC) can ease some of these challenges by enabling long-ranged entanglement via electric dipole-dipole interactions, microwave photons, or phonons. However, SOC exposes conventional spin qubits to decoherence from electrical noise. Here, we propose an acceptor-based spin-orbit qubit in silicon offering long-range entanglement at a sweet spot where the qubit is protected from electrical noise. The qubit relies on quadrupolar SOC with the interface and gate potentials. As required for surface codes, 10^{5} electrically mediated single-qubit and 10^{4} dipole-dipole mediated two-qubit gates are possible in the predicted spin lifetime. Moreover, circuit quantum electrodynamics with single spins is feasible, including dispersive readout, cavity-mediated entanglement, and spin-photon entanglement. An industrially relevant silicon-based platform is employed.
片上自旋量子比特阵列的高保真纠缠带来了诸多挑战。自旋轨道耦合(SOC)可以通过电偶极 - 偶极相互作用、微波光子或声子实现长程纠缠,从而缓解其中一些挑战。然而,SOC会使传统自旋量子比特因电噪声而退相干。在此,我们提出一种基于硅中受主的自旋轨道量子比特,它在一个能保护量子比特免受电噪声影响的最佳工作点提供长程纠缠。该量子比特依赖于与界面和栅极电势相关的四极SOC。如表面码所要求的那样,在预测的自旋寿命内,有可能实现(10^{5})次电介导单比特门操作以及(10^{4})次偶极 - 偶极介导双比特门操作。此外,单自旋的电路量子电动力学是可行的,包括色散读出、腔介导纠缠以及自旋 - 光子纠缠。我们采用了一个与工业相关的硅基平台。