Centre for Quantum Computation and Communication Technology, School of Electrical Engineering & Telecommunications, UNSW, Sydney, NSW, 2052, Australia.
Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, 37830, TN, USA.
Nat Commun. 2017 Sep 6;8(1):450. doi: 10.1038/s41467-017-00378-x.
Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.Quantum computers will require a large network of coherent qubits, connected in a noise-resilient way. Tosi et al. present a design for a quantum processor based on electron-nuclear spins in silicon, with electrical control and coupling schemes that simplify qubit fabrication and operation.
实用的量子计算机需要一个由高度相干的量子位组成的大型网络,这些量子位以一种对错误具有鲁棒性的设计相互连接。硅中的供体自旋提供了最先进的相干性和量子门保真度,其平台源自工业半导体处理。在这里,我们提出了一种可扩展的硅量子处理器设计,它不需要精确的供体位点,并且为互连和读出设备的布线留出了充足的空间。我们引入了翻转量子比特,这是磷供体的电子-核自旋态的组合,可以通过微波电场进行控制。双量子比特门利用二阶电偶极-偶极相互作用,允许在数百纳米的分离距离处选择性地进行除最近邻之外的耦合,而微波谐振器可以将纠缠扩展到宏观距离。我们使用现实的噪声模型预测了容错阈值内的门保真度。该设计为硅基可扩展自旋量子计算机提供了一个可行的蓝图。