Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
Condensed Matter Physics and Materials Sciences Division, Brookhaven National Laboratory, Building 480, Upton, NY 11973, USA.
Nanoscale. 2016 Aug 25;8(34):15553-70. doi: 10.1039/c6nr03091b.
As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT)-CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ∼4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves coupled with the electron affinity of their pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.
作为一种用于探测复杂复合异质结构中配体依赖性电荷转移的模型体系,我们制备了双壁碳纳米管(DWNT)-CdSe 量子点(QD)复合材料。虽然所探测的 QD 的平均直径保持在约 4.1nm 且分析的纳米管以相似的方式进行氧化处理,但用于介导 QD 和 DWNT 之间共价附着的配体则被系统地改变,包括对苯二胺(PPD)、2-氨基乙硫醇(AET)和 4-氨基噻吩酚(ATP)。在此,我们提出了实验和理论的独特互补数据,包括透射电子显微镜(TEM)、近边 X 射线吸收精细结构(NEXAFS)光谱、拉曼光谱、输运测量和理论建模研究的结果,以便从根本上评估 CdSe QD 和 DWNT 之间电荷转移的性质,作为各种不同的中间桥连配体分子的结构的函数。具体来说,我们关联了电荷转移的证据,表现为与 NEXAFS 强度、拉曼峰位置和阈值电压相关的变化和位移,这些变化和位移在 CdSe QD 沉积到 DWNT 表面之前和之后都存在。重要的是,在这些类型的纳米级复合体系中,我们首次尝试使用理论建模来证明和解释我们的实验结果。我们的整体数据表明:(i)基于所使用的不同配体侧基,QD 在 DWNT 上的覆盖密度会发生变化;(ii)配体本身中存在π共轭碳框架以及它们的侧基的电子亲和力在 QD 到基底 CNT 的电荷转移中都起着重要作用。