Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
Acc Chem Res. 2015 Mar 17;48(3):851-9. doi: 10.1021/ar500398g. Epub 2015 Feb 16.
Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.
胶体量子限制的一维(1D)半导体纳米棒(NRs)和相关的半导体-金属异质结构是高效太阳能-燃料转化的有前途的新材料,因为它们具有独特的物理和化学性质。NRs 可以同时在径向方向表现出量子限制效应,在轴向方向表现出类似体的载流子输运。前者意味着在零维量子点中建立的概念,例如通过异质结构中的能带排列来调整尺寸可调的能量和波函数工程,也可以应用于 NRs;而后者赋予 NRs 快速的载流子输运能力,以实现长距离电荷分离。在 NRs 的尖端选择性生长催化金属纳米粒子,如 Pt,为具有光催化能力和可控电荷分离距离的多组分异质结构提供了方便的途径。为了实现高效太阳能-燃料转化,对这些材料的设计和优化需要了解激子和电荷载流子动力学。在本账目中,我们总结了我们最近对胶体 CdS 和 CdSe/CdS NRs 及其相关 NR-Pt 异质结构的超快电荷分离和复合动力学及其对稳态光催化效率的影响的研究。在简要介绍其电子结构之后,我们讨论了 CdS NRs 的激子动力学。通过瞬态吸收和时间分辨光致发光衰减,表明尽管导带电子寿命长,但 CdS NRs 中的光生空穴在超快时间尺度(约 0.7 ps)上被捕获,这是由于 1D NRs 中的强库仑相互作用形成了局域激子。在准 II 型 CdSe/CdS 点-在-棒 NRs 中,大的价带偏移导致空穴超快局域到 CdSe 核,并且该过程与 CdS 棒上超快空穴捕获之间的竞争导致具有不同空间分布的三种类型的激子物种。通过使用甲基紫精(MV(2+))作为模型电子受体,说明了激子动力学对光还原反应的影响。CdSe/CdS 点-在-棒 NRs 的 MV(2+)光还原量子产率在棒激发下接近 1,远大于 CdSe QDs 和 CdSe/CdS 核/壳 QDs。详细的时间分辨研究表明,在准 II 型 CdSe/CdS NRs 和 II 型 ZnSe/CdS NRs 中,径向的强量子限制促进了快速电子转移和空穴去除,而轴向的快速载流子迁移率则实现了长距离的电荷分离和缓慢的电荷复合,这对于高效 MV(2+)光还原至关重要。NR/MV(2+)接力系统可以与溶液中的 Pt 纳米颗粒耦合,用于光驱动 H2 生成。或者,Pt 尖端的 CdS 和 CdSe/CdS NRs 提供了完全集成的全无机系统,用于光驱动 H2 生成。在 CdS-Pt 和 CdSe/CdS-Pt 异质 NRs 中,CdS 棒表面或 CdSe 核中的超快空穴捕获通过抑制空穴和能量转移,从而实现从 NRs 到 Pt 尖端的有效电子转移。结果表明,使用这些异质结构的光驱动 H2 生成量子产率与测量的从 NRs 到牺牲供体的空穴转移速率很好地相关,表明空穴去除是关键的效率限制步骤。这些发现为设计更高效的量子限制 NR 和基于 NR-Pt 的太阳能-燃料转化系统提供了重要的见解。
Chem Soc Rev. 2016-7-11
Chem Rev. 2024-5-8
Nanomaterials (Basel). 2023-5-8
Nanomaterials (Basel). 2023-4-28