Suppr超能文献

一种用于云计算中增量数据集的创新隐私保护技术。

An innovative privacy preserving technique for incremental datasets on cloud computing.

作者信息

Aldeen Yousra Abdul Alsahib S, Salleh Mazleena, Aljeroudi Yazan

机构信息

Faculty of Computing, Universiti Teknologi Malaysia, UTM, 81310 UTM Skudai, Johor, Malaysia.

International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia.

出版信息

J Biomed Inform. 2016 Aug;62:107-16. doi: 10.1016/j.jbi.2016.06.011. Epub 2016 Jun 28.

Abstract

Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation.

摘要

云计算(CC)是一种基于服务的强大交付方式,具有巨大的计算机处理能力,并通过互联通信渠道进行数据存储。它在互联网(网络)介导的信息技术产业中带来了巨大的技术推动力,用户可以轻松共享私人数据以进行进一步分析和挖掘。此外,用户友好的云计算服务能够经济地部署各种应用程序。与此同时,简单的数据共享引发了各种网络钓鱼攻击以及恶意软件辅助的安全威胁。一些对隐私敏感的应用程序,如云上的医疗服务,虽然具有多种经济和运营优势,但需要增强安全性。因此,确保绝对的网络空间安全并抵御网络钓鱼攻击对于保护整体数据隐私变得至关重要。通常,各种应用程序数据集会以更好的隐私性进行匿名化处理,而无需向新添加的记录提供所有保密要求。一些提出的技术通过从头重新匿名化数据集来强调这个问题。在云计算上对增量数据集实现最大程度的隐私保护仍远未达成。当然,跨多个存储节点分布的大量数据集限制了隐私保护。有鉴于此,我们提出一种新的匿名化技术,以在云计算上的分布式和增量数据集上实现更好的隐私保护和高数据效用。通过性能评估展示了数据隐私保护的能力以及改进的保密要求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验