Suppr超能文献

OntoADR是一种描述药物不良反应的语义资源,用于支持搜索、编码和信息检索。

OntoADR a semantic resource describing adverse drug reactions to support searching, coding, and information retrieval.

作者信息

Souvignet Julien, Declerck Gunnar, Asfari Hadyl, Jaulent Marie-Christine, Bousquet Cédric

机构信息

INSERM, U1142, LIMICS, F-75006 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1142, LIMICS, F-75006 Paris, France; Université Paris 13, Sorbonne Paris Cité, LIMICS, (UMR_S 1142), F-93430 Villetaneuse, France; SSPIM, CHU University Hospital of Saint Etienne, Saint Etienne, France.

Sorbonne Universités, Université de technologie de Compiègne, EA 2223 Costech (Connaissance, Organisation et Systèmes Techniques), Centre Pierre Guillaumat, CS 60 319, 60 203 Compiègne cedex, France.

出版信息

J Biomed Inform. 2016 Oct;63:100-107. doi: 10.1016/j.jbi.2016.06.010. Epub 2016 Jun 28.

Abstract

INTRODUCTION

Efficient searching and coding in databases that use terminological resources requires that they support efficient data retrieval. The Medical Dictionary for Regulatory Activities (MedDRA) is a reference terminology for several countries and organizations to code adverse drug reactions (ADRs) for pharmacovigilance. Ontologies that are available in the medical domain provide several advantages such as reasoning to improve data retrieval. The field of pharmacovigilance does not yet benefit from a fully operational ontology to formally represent the MedDRA terms. Our objective was to build a semantic resource based on formal description logic to improve MedDRA term retrieval and aid the generation of on-demand custom groupings by appropriately and efficiently selecting terms: OntoADR.

METHODS

The method consists of the following steps: (1) mapping between MedDRA terms and SNOMED-CT, (2) generation of semantic definitions using semi-automatic methods, (3) storage of the resource and (4) manual curation by pharmacovigilance experts.

RESULTS

We built a semantic resource for ADRs enabling a new type of semantics-based term search. OntoADR adds new search capabilities relative to previous approaches, overcoming the usual limitations of computation using lightweight description logic, such as the intractability of unions or negation queries, bringing it closer to user needs. Our automated approach for defining MedDRA terms enabled the association of at least one defining relationship with 67% of preferred terms. The curation work performed on our sample showed an error level of 14% for this automated approach. We tested OntoADR in practice, which allowed us to build custom groupings for several medical topics of interest.

DISCUSSION

The methods we describe in this article could be adapted and extended to other terminologies which do not benefit from a formal semantic representation, thus enabling better data retrieval performance. Our custom groupings of MedDRA terms were used while performing signal detection, which suggests that the graphical user interface we are currently implementing to process OntoADR could be usefully integrated into specialized pharmacovigilance software that rely on MedDRA.

摘要

引言

在使用术语资源的数据库中进行高效搜索和编码需要这些资源支持高效的数据检索。《药物不良反应术语集》(MedDRA)是多个国家和组织用于对药物警戒中的药品不良反应(ADR)进行编码的参考术语集。医学领域中可用的本体具有诸多优势,例如可通过推理来改善数据检索。药物警戒领域尚未受益于一个能正式表示MedDRA术语的全面运行的本体。我们的目标是基于形式描述逻辑构建一个语义资源,以改善MedDRA术语检索,并通过适当且高效地选择术语来辅助生成按需定制的分组:OntoADR。

方法

该方法包括以下步骤:(1)MedDRA术语与SNOMED-CT之间的映射,(2)使用半自动方法生成语义定义,(3)资源存储,以及(4)由药物警戒专家进行人工审核。

结果

我们构建了一个用于ADR的语义资源,实现了一种新型的基于语义的术语搜索。相对于先前的方法,OntoADR增加了新的搜索功能,克服了使用轻量级描述逻辑进行计算时的常见限制,如联合或否定查询的难处理性,使其更贴近用户需求。我们用于定义MedDRA术语的自动化方法使得至少67%的首选术语能关联到至少一种定义关系。针对我们的样本进行的审核工作表明,这种自动化方法的错误率为14%。我们在实践中对OntoADR进行了测试,这使我们能够为几个感兴趣的医学主题构建定制分组。

讨论

我们在本文中描述的方法可以进行调整和扩展,以适用于其他未受益于形式语义表示的术语集,从而实现更好的数据检索性能。我们对MedDRA术语的定制分组在进行信号检测时被使用,这表明我们目前正在开发的用于处理OntoADR的图形用户界面可以有效地集成到依赖MedDRA的专业药物警戒软件中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验